| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evpmss.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | evpmss.p | ⊢ 𝑃  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | psgnevpmb.n | ⊢ 𝑁  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 4 |  | elex | ⊢ ( 𝐷  ∈  Fin  →  𝐷  ∈  V ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑑  =  𝐷  →  ( pmSgn ‘ 𝑑 )  =  ( pmSgn ‘ 𝐷 ) ) | 
						
							| 6 | 5 3 | eqtr4di | ⊢ ( 𝑑  =  𝐷  →  ( pmSgn ‘ 𝑑 )  =  𝑁 ) | 
						
							| 7 | 6 | cnveqd | ⊢ ( 𝑑  =  𝐷  →  ◡ ( pmSgn ‘ 𝑑 )  =  ◡ 𝑁 ) | 
						
							| 8 | 7 | imaeq1d | ⊢ ( 𝑑  =  𝐷  →  ( ◡ ( pmSgn ‘ 𝑑 )  “  { 1 } )  =  ( ◡ 𝑁  “  { 1 } ) ) | 
						
							| 9 |  | df-evpm | ⊢ pmEven  =  ( 𝑑  ∈  V  ↦  ( ◡ ( pmSgn ‘ 𝑑 )  “  { 1 } ) ) | 
						
							| 10 | 3 | fvexi | ⊢ 𝑁  ∈  V | 
						
							| 11 | 10 | cnvex | ⊢ ◡ 𝑁  ∈  V | 
						
							| 12 | 11 | imaex | ⊢ ( ◡ 𝑁  “  { 1 } )  ∈  V | 
						
							| 13 | 8 9 12 | fvmpt | ⊢ ( 𝐷  ∈  V  →  ( pmEven ‘ 𝐷 )  =  ( ◡ 𝑁  “  { 1 } ) ) | 
						
							| 14 | 4 13 | syl | ⊢ ( 𝐷  ∈  Fin  →  ( pmEven ‘ 𝐷 )  =  ( ◡ 𝑁  “  { 1 } ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( 𝐷  ∈  Fin  →  ( 𝐹  ∈  ( pmEven ‘ 𝐷 )  ↔  𝐹  ∈  ( ◡ 𝑁  “  { 1 } ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } )  =  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) | 
						
							| 17 | 1 3 16 | psgnghm2 | ⊢ ( 𝐷  ∈  Fin  →  𝑁  ∈  ( 𝑆  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  =  ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) | 
						
							| 19 | 2 18 | ghmf | ⊢ ( 𝑁  ∈  ( 𝑆  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  →  𝑁 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 20 |  | ffn | ⊢ ( 𝑁 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  →  𝑁  Fn  𝑃 ) | 
						
							| 21 |  | fniniseg | ⊢ ( 𝑁  Fn  𝑃  →  ( 𝐹  ∈  ( ◡ 𝑁  “  { 1 } )  ↔  ( 𝐹  ∈  𝑃  ∧  ( 𝑁 ‘ 𝐹 )  =  1 ) ) ) | 
						
							| 22 | 17 19 20 21 | 4syl | ⊢ ( 𝐷  ∈  Fin  →  ( 𝐹  ∈  ( ◡ 𝑁  “  { 1 } )  ↔  ( 𝐹  ∈  𝑃  ∧  ( 𝑁 ‘ 𝐹 )  =  1 ) ) ) | 
						
							| 23 | 15 22 | bitrd | ⊢ ( 𝐷  ∈  Fin  →  ( 𝐹  ∈  ( pmEven ‘ 𝐷 )  ↔  ( 𝐹  ∈  𝑃  ∧  ( 𝑁 ‘ 𝐹 )  =  1 ) ) ) |