Step |
Hyp |
Ref |
Expression |
1 |
|
evpmss.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
evpmss.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
3 |
|
psgnevpmb.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
4 |
|
elex |
⊢ ( 𝐷 ∈ Fin → 𝐷 ∈ V ) |
5 |
|
fveq2 |
⊢ ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = ( pmSgn ‘ 𝐷 ) ) |
6 |
5 3
|
eqtr4di |
⊢ ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = 𝑁 ) |
7 |
6
|
cnveqd |
⊢ ( 𝑑 = 𝐷 → ◡ ( pmSgn ‘ 𝑑 ) = ◡ 𝑁 ) |
8 |
7
|
imaeq1d |
⊢ ( 𝑑 = 𝐷 → ( ◡ ( pmSgn ‘ 𝑑 ) “ { 1 } ) = ( ◡ 𝑁 “ { 1 } ) ) |
9 |
|
df-evpm |
⊢ pmEven = ( 𝑑 ∈ V ↦ ( ◡ ( pmSgn ‘ 𝑑 ) “ { 1 } ) ) |
10 |
3
|
fvexi |
⊢ 𝑁 ∈ V |
11 |
10
|
cnvex |
⊢ ◡ 𝑁 ∈ V |
12 |
11
|
imaex |
⊢ ( ◡ 𝑁 “ { 1 } ) ∈ V |
13 |
8 9 12
|
fvmpt |
⊢ ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ( ◡ 𝑁 “ { 1 } ) ) |
14 |
4 13
|
syl |
⊢ ( 𝐷 ∈ Fin → ( pmEven ‘ 𝐷 ) = ( ◡ 𝑁 “ { 1 } ) ) |
15 |
14
|
eleq2d |
⊢ ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ 𝐹 ∈ ( ◡ 𝑁 “ { 1 } ) ) ) |
16 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
17 |
1 3 16
|
psgnghm2 |
⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
18 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
19 |
2 18
|
ghmf |
⊢ ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑁 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
20 |
17 19
|
syl |
⊢ ( 𝐷 ∈ Fin → 𝑁 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
21 |
|
ffn |
⊢ ( 𝑁 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑁 Fn 𝑃 ) |
22 |
|
fniniseg |
⊢ ( 𝑁 Fn 𝑃 → ( 𝐹 ∈ ( ◡ 𝑁 “ { 1 } ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |
23 |
20 21 22
|
3syl |
⊢ ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( ◡ 𝑁 “ { 1 } ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |
24 |
15 23
|
bitrd |
⊢ ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |