Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfix.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
psgnfix.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
3 |
|
psgnfix.s |
⊢ 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
4 |
|
eqid |
⊢ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } |
5 |
3
|
fveq2i |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
6 |
|
eqid |
⊢ ( 𝑁 ∖ { 𝐾 } ) = ( 𝑁 ∖ { 𝐾 } ) |
7 |
1 4 5 6
|
symgfixelsi |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ 𝑆 ) ) |
8 |
7
|
adantll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ 𝑆 ) ) |
9 |
|
diffi |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
12 |
3 11 2
|
psgnfitr |
⊢ ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ 𝑆 ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑤 ) ) ) |
13 |
10 12
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ 𝑆 ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑤 ) ) ) |
14 |
8 13
|
mpbid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑤 ) ) |
15 |
14
|
ex |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑤 ) ) ) |