Metamath Proof Explorer


Theorem psgnfix1

Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfix.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
psgnfix.t 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) )
psgnfix.s 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) )
Assertion psgnfix1 ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) → ( 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } → ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 psgnfix.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 psgnfix.t 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) )
3 psgnfix.s 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) )
4 eqid { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } = { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 }
5 3 fveq2i ( Base ‘ 𝑆 ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) )
6 eqid ( 𝑁 ∖ { 𝐾 } ) = ( 𝑁 ∖ { 𝐾 } )
7 1 4 5 6 symgfixelsi ( ( 𝐾𝑁𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ 𝑆 ) )
8 7 adantll ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ 𝑆 ) )
9 diffi ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin )
10 9 ad2antrr ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin )
11 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
12 3 11 2 psgnfitr ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ 𝑆 ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑤 ) ) )
13 10 12 syl ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ 𝑆 ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑤 ) ) )
14 8 13 mpbid ( ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) ∧ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } ) → ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑤 ) )
15 14 ex ( ( 𝑁 ∈ Fin ∧ 𝐾𝑁 ) → ( 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 } → ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑤 ) ) )