Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfix.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
psgnfix.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
3 |
|
psgnfix.s |
⊢ 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
4 |
|
psgnfix.z |
⊢ 𝑍 = ( SymGrp ‘ 𝑁 ) |
5 |
|
psgnfix.r |
⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) |
6 |
|
elrabi |
⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → 𝑄 ∈ 𝑃 ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → 𝑄 ∈ 𝑃 ) |
8 |
4
|
fveq2i |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
9 |
1 8
|
eqtr4i |
⊢ 𝑃 = ( Base ‘ 𝑍 ) |
10 |
4 9 5
|
psgnfitr |
⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝑃 ↔ ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ) ) |
11 |
10
|
bicomd |
⊢ ( 𝑁 ∈ Fin → ( ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ↔ 𝑄 ∈ 𝑃 ) ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ↔ 𝑄 ∈ 𝑃 ) ) |
13 |
7 12
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ) |
14 |
13
|
ex |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ∃ 𝑤 ∈ Word 𝑅 𝑄 = ( 𝑍 Σg 𝑤 ) ) ) |