Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfvalfi.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
2 |
|
psgnfvalfi.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
psgnfvalfi.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
4 |
|
psgnfvalfi.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
5 |
|
eqid |
⊢ { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
6 |
1 2 5 3 4
|
psgnfval |
⊢ 𝑁 = ( 𝑥 ∈ { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
7 |
1 2
|
sygbasnfpfi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐵 ) → dom ( 𝑝 ∖ I ) ∈ Fin ) |
8 |
7
|
ralrimiva |
⊢ ( 𝐷 ∈ Fin → ∀ 𝑝 ∈ 𝐵 dom ( 𝑝 ∖ I ) ∈ Fin ) |
9 |
|
rabid2 |
⊢ ( 𝐵 = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↔ ∀ 𝑝 ∈ 𝐵 dom ( 𝑝 ∖ I ) ∈ Fin ) |
10 |
8 9
|
sylibr |
⊢ ( 𝐷 ∈ Fin → 𝐵 = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) |
11 |
10
|
eqcomd |
⊢ ( 𝐷 ∈ Fin → { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = 𝐵 ) |
12 |
11
|
mpteq1d |
⊢ ( 𝐷 ∈ Fin → ( 𝑥 ∈ { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
13 |
6 12
|
eqtrid |
⊢ ( 𝐷 ∈ Fin → 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |