Metamath Proof Explorer


Theorem psgnfvalfi

Description: Function definition of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfvalfi.g 𝐺 = ( SymGrp ‘ 𝐷 )
psgnfvalfi.b 𝐵 = ( Base ‘ 𝐺 )
psgnfvalfi.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
psgnfvalfi.n 𝑁 = ( pmSgn ‘ 𝐷 )
Assertion psgnfvalfi ( 𝐷 ∈ Fin → 𝑁 = ( 𝑥𝐵 ↦ ( ℩ 𝑠𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 psgnfvalfi.g 𝐺 = ( SymGrp ‘ 𝐷 )
2 psgnfvalfi.b 𝐵 = ( Base ‘ 𝐺 )
3 psgnfvalfi.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
4 psgnfvalfi.n 𝑁 = ( pmSgn ‘ 𝐷 )
5 eqid { 𝑝𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin }
6 1 2 5 3 4 psgnfval 𝑁 = ( 𝑥 ∈ { 𝑝𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )
7 1 2 sygbasnfpfi ( ( 𝐷 ∈ Fin ∧ 𝑝𝐵 ) → dom ( 𝑝 ∖ I ) ∈ Fin )
8 7 ralrimiva ( 𝐷 ∈ Fin → ∀ 𝑝𝐵 dom ( 𝑝 ∖ I ) ∈ Fin )
9 rabid2 ( 𝐵 = { 𝑝𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↔ ∀ 𝑝𝐵 dom ( 𝑝 ∖ I ) ∈ Fin )
10 8 9 sylibr ( 𝐷 ∈ Fin → 𝐵 = { 𝑝𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } )
11 10 eqcomd ( 𝐷 ∈ Fin → { 𝑝𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = 𝐵 )
12 11 mpteq1d ( 𝐷 ∈ Fin → ( 𝑥 ∈ { 𝑝𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) = ( 𝑥𝐵 ↦ ( ℩ 𝑠𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) )
13 6 12 syl5eq ( 𝐷 ∈ Fin → 𝑁 = ( 𝑥𝐵 ↦ ( ℩ 𝑠𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) )