Metamath Proof Explorer


Theorem psgnghm

Description: The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnghm.s 𝑆 = ( SymGrp ‘ 𝐷 )
psgnghm.n 𝑁 = ( pmSgn ‘ 𝐷 )
psgnghm.f 𝐹 = ( 𝑆s dom 𝑁 )
psgnghm.u 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
Assertion psgnghm ( 𝐷𝑉𝑁 ∈ ( 𝐹 GrpHom 𝑈 ) )

Proof

Step Hyp Ref Expression
1 psgnghm.s 𝑆 = ( SymGrp ‘ 𝐷 )
2 psgnghm.n 𝑁 = ( pmSgn ‘ 𝐷 )
3 psgnghm.f 𝐹 = ( 𝑆s dom 𝑁 )
4 psgnghm.u 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
5 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
6 eqid { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin }
7 1 5 6 2 psgnfn 𝑁 Fn { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin }
8 7 fndmi dom 𝑁 = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin }
9 8 ssrab3 dom 𝑁 ⊆ ( Base ‘ 𝑆 )
10 3 5 ressbas2 ( dom 𝑁 ⊆ ( Base ‘ 𝑆 ) → dom 𝑁 = ( Base ‘ 𝐹 ) )
11 9 10 ax-mp dom 𝑁 = ( Base ‘ 𝐹 )
12 4 cnmsgnbas { 1 , - 1 } = ( Base ‘ 𝑈 )
13 11 fvexi dom 𝑁 ∈ V
14 eqid ( +g𝑆 ) = ( +g𝑆 )
15 3 14 ressplusg ( dom 𝑁 ∈ V → ( +g𝑆 ) = ( +g𝐹 ) )
16 13 15 ax-mp ( +g𝑆 ) = ( +g𝐹 )
17 prex { 1 , - 1 } ∈ V
18 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
19 cnfldmul · = ( .r ‘ ℂfld )
20 18 19 mgpplusg · = ( +g ‘ ( mulGrp ‘ ℂfld ) )
21 4 20 ressplusg ( { 1 , - 1 } ∈ V → · = ( +g𝑈 ) )
22 17 21 ax-mp · = ( +g𝑈 )
23 1 2 psgndmsubg ( 𝐷𝑉 → dom 𝑁 ∈ ( SubGrp ‘ 𝑆 ) )
24 3 subggrp ( dom 𝑁 ∈ ( SubGrp ‘ 𝑆 ) → 𝐹 ∈ Grp )
25 23 24 syl ( 𝐷𝑉𝐹 ∈ Grp )
26 4 cnmsgngrp 𝑈 ∈ Grp
27 26 a1i ( 𝐷𝑉𝑈 ∈ Grp )
28 fnfun ( 𝑁 Fn { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } → Fun 𝑁 )
29 7 28 ax-mp Fun 𝑁
30 funfn ( Fun 𝑁𝑁 Fn dom 𝑁 )
31 29 30 mpbi 𝑁 Fn dom 𝑁
32 31 a1i ( 𝐷𝑉𝑁 Fn dom 𝑁 )
33 eqid ran ( pmTrsp ‘ 𝐷 ) = ran ( pmTrsp ‘ 𝐷 )
34 1 33 2 psgnvali ( 𝑥 ∈ dom 𝑁 → ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) )
35 lencl ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 )
36 35 nn0zd ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ♯ ‘ 𝑧 ) ∈ ℤ )
37 m1expcl2 ( ( ♯ ‘ 𝑧 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∈ { - 1 , 1 } )
38 prcom { - 1 , 1 } = { 1 , - 1 }
39 37 38 eleqtrdi ( ( ♯ ‘ 𝑧 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∈ { 1 , - 1 } )
40 eleq1a ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∈ { 1 , - 1 } → ( ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) → ( 𝑁𝑥 ) ∈ { 1 , - 1 } ) )
41 36 39 40 3syl ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) → ( 𝑁𝑥 ) ∈ { 1 , - 1 } ) )
42 41 adantld ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) → ( 𝑁𝑥 ) ∈ { 1 , - 1 } ) )
43 42 rexlimiv ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) → ( 𝑁𝑥 ) ∈ { 1 , - 1 } )
44 43 a1i ( 𝐷𝑉 → ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) → ( 𝑁𝑥 ) ∈ { 1 , - 1 } ) )
45 34 44 syl5 ( 𝐷𝑉 → ( 𝑥 ∈ dom 𝑁 → ( 𝑁𝑥 ) ∈ { 1 , - 1 } ) )
46 45 ralrimiv ( 𝐷𝑉 → ∀ 𝑥 ∈ dom 𝑁 ( 𝑁𝑥 ) ∈ { 1 , - 1 } )
47 ffnfv ( 𝑁 : dom 𝑁 ⟶ { 1 , - 1 } ↔ ( 𝑁 Fn dom 𝑁 ∧ ∀ 𝑥 ∈ dom 𝑁 ( 𝑁𝑥 ) ∈ { 1 , - 1 } ) )
48 32 46 47 sylanbrc ( 𝐷𝑉𝑁 : dom 𝑁 ⟶ { 1 , - 1 } )
49 ccatcl ( ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( 𝑧 ++ 𝑤 ) ∈ Word ran ( pmTrsp ‘ 𝐷 ) )
50 1 33 2 psgnvalii ( ( 𝐷𝑉 ∧ ( 𝑧 ++ 𝑤 ) ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( 𝑁 ‘ ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) )
51 49 50 sylan2 ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑁 ‘ ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) )
52 1 symggrp ( 𝐷𝑉𝑆 ∈ Grp )
53 52 grpmndd ( 𝐷𝑉𝑆 ∈ Mnd )
54 33 1 5 symgtrf ran ( pmTrsp ‘ 𝐷 ) ⊆ ( Base ‘ 𝑆 )
55 sswrd ( ran ( pmTrsp ‘ 𝐷 ) ⊆ ( Base ‘ 𝑆 ) → Word ran ( pmTrsp ‘ 𝐷 ) ⊆ Word ( Base ‘ 𝑆 ) )
56 54 55 ax-mp Word ran ( pmTrsp ‘ 𝐷 ) ⊆ Word ( Base ‘ 𝑆 )
57 56 sseli ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → 𝑧 ∈ Word ( Base ‘ 𝑆 ) )
58 56 sseli ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → 𝑤 ∈ Word ( Base ‘ 𝑆 ) )
59 5 14 gsumccat ( ( 𝑆 ∈ Mnd ∧ 𝑧 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑤 ∈ Word ( Base ‘ 𝑆 ) ) → ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) = ( ( 𝑆 Σg 𝑧 ) ( +g𝑆 ) ( 𝑆 Σg 𝑤 ) ) )
60 53 57 58 59 syl3an ( ( 𝐷𝑉𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) = ( ( 𝑆 Σg 𝑧 ) ( +g𝑆 ) ( 𝑆 Σg 𝑤 ) ) )
61 60 3expb ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) = ( ( 𝑆 Σg 𝑧 ) ( +g𝑆 ) ( 𝑆 Σg 𝑤 ) ) )
62 61 fveq2d ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑁 ‘ ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) ) = ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) )
63 ccatlen ( ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) = ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) )
64 63 adantl ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) = ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) )
65 64 oveq2d ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) = ( - 1 ↑ ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) ) )
66 neg1cn - 1 ∈ ℂ
67 66 a1i ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → - 1 ∈ ℂ )
68 lencl ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 )
69 68 ad2antll ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 )
70 35 ad2antrl ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 )
71 67 69 70 expaddd ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( - 1 ↑ ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) )
72 65 71 eqtrd ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) )
73 51 62 72 3eqtr3d ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) )
74 oveq12 ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ 𝑦 = ( 𝑆 Σg 𝑤 ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) = ( ( 𝑆 Σg 𝑧 ) ( +g𝑆 ) ( 𝑆 Σg 𝑤 ) ) )
75 74 fveq2d ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ 𝑦 = ( 𝑆 Σg 𝑤 ) ) → ( 𝑁 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) )
76 oveq12 ( ( ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∧ ( 𝑁𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ( ( 𝑁𝑥 ) · ( 𝑁𝑦 ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) )
77 75 76 eqeqan12d ( ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ 𝑦 = ( 𝑆 Σg 𝑤 ) ) ∧ ( ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∧ ( 𝑁𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( ( 𝑁 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝑁𝑥 ) · ( 𝑁𝑦 ) ) ↔ ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )
78 77 an4s ( ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( ( 𝑁 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝑁𝑥 ) · ( 𝑁𝑦 ) ) ↔ ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )
79 73 78 syl5ibrcom ( ( 𝐷𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( 𝑁 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝑁𝑥 ) · ( 𝑁𝑦 ) ) ) )
80 79 rexlimdvva ( 𝐷𝑉 → ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( 𝑁 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝑁𝑥 ) · ( 𝑁𝑦 ) ) ) )
81 1 33 2 psgnvali ( 𝑦 ∈ dom 𝑁 → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) )
82 34 81 anim12i ( ( 𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁 ) → ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )
83 reeanv ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ↔ ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )
84 82 83 sylibr ( ( 𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁 ) → ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )
85 80 84 impel ( ( 𝐷𝑉 ∧ ( 𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁 ) ) → ( 𝑁 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝑁𝑥 ) · ( 𝑁𝑦 ) ) )
86 11 12 16 22 25 27 48 85 isghmd ( 𝐷𝑉𝑁 ∈ ( 𝐹 GrpHom 𝑈 ) )