Step |
Hyp |
Ref |
Expression |
1 |
|
psgnghm.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
psgnghm.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
3 |
|
psgnghm.f |
⊢ 𝐹 = ( 𝑆 ↾s dom 𝑁 ) |
4 |
|
psgnghm.u |
⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
6 |
|
eqid |
⊢ { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
7 |
1 5 6 2
|
psgnfn |
⊢ 𝑁 Fn { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
8 |
7
|
fndmi |
⊢ dom 𝑁 = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
9 |
8
|
ssrab3 |
⊢ dom 𝑁 ⊆ ( Base ‘ 𝑆 ) |
10 |
3 5
|
ressbas2 |
⊢ ( dom 𝑁 ⊆ ( Base ‘ 𝑆 ) → dom 𝑁 = ( Base ‘ 𝐹 ) ) |
11 |
9 10
|
ax-mp |
⊢ dom 𝑁 = ( Base ‘ 𝐹 ) |
12 |
4
|
cnmsgnbas |
⊢ { 1 , - 1 } = ( Base ‘ 𝑈 ) |
13 |
11
|
fvexi |
⊢ dom 𝑁 ∈ V |
14 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
15 |
3 14
|
ressplusg |
⊢ ( dom 𝑁 ∈ V → ( +g ‘ 𝑆 ) = ( +g ‘ 𝐹 ) ) |
16 |
13 15
|
ax-mp |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝐹 ) |
17 |
|
prex |
⊢ { 1 , - 1 } ∈ V |
18 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
19 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
20 |
18 19
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
21 |
4 20
|
ressplusg |
⊢ ( { 1 , - 1 } ∈ V → · = ( +g ‘ 𝑈 ) ) |
22 |
17 21
|
ax-mp |
⊢ · = ( +g ‘ 𝑈 ) |
23 |
1 2
|
psgndmsubg |
⊢ ( 𝐷 ∈ 𝑉 → dom 𝑁 ∈ ( SubGrp ‘ 𝑆 ) ) |
24 |
3
|
subggrp |
⊢ ( dom 𝑁 ∈ ( SubGrp ‘ 𝑆 ) → 𝐹 ∈ Grp ) |
25 |
23 24
|
syl |
⊢ ( 𝐷 ∈ 𝑉 → 𝐹 ∈ Grp ) |
26 |
4
|
cnmsgngrp |
⊢ 𝑈 ∈ Grp |
27 |
26
|
a1i |
⊢ ( 𝐷 ∈ 𝑉 → 𝑈 ∈ Grp ) |
28 |
|
fnfun |
⊢ ( 𝑁 Fn { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } → Fun 𝑁 ) |
29 |
7 28
|
ax-mp |
⊢ Fun 𝑁 |
30 |
|
funfn |
⊢ ( Fun 𝑁 ↔ 𝑁 Fn dom 𝑁 ) |
31 |
29 30
|
mpbi |
⊢ 𝑁 Fn dom 𝑁 |
32 |
31
|
a1i |
⊢ ( 𝐷 ∈ 𝑉 → 𝑁 Fn dom 𝑁 ) |
33 |
|
eqid |
⊢ ran ( pmTrsp ‘ 𝐷 ) = ran ( pmTrsp ‘ 𝐷 ) |
34 |
1 33 2
|
psgnvali |
⊢ ( 𝑥 ∈ dom 𝑁 → ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ) |
35 |
|
lencl |
⊢ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
36 |
35
|
nn0zd |
⊢ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ♯ ‘ 𝑧 ) ∈ ℤ ) |
37 |
|
m1expcl2 |
⊢ ( ( ♯ ‘ 𝑧 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∈ { - 1 , 1 } ) |
38 |
|
prcom |
⊢ { - 1 , 1 } = { 1 , - 1 } |
39 |
37 38
|
eleqtrdi |
⊢ ( ( ♯ ‘ 𝑧 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∈ { 1 , - 1 } ) |
40 |
|
eleq1a |
⊢ ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∈ { 1 , - 1 } → ( ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) |
41 |
36 39 40
|
3syl |
⊢ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) |
42 |
41
|
adantld |
⊢ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) |
43 |
42
|
rexlimiv |
⊢ ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) |
44 |
43
|
a1i |
⊢ ( 𝐷 ∈ 𝑉 → ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) |
45 |
34 44
|
syl5 |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝑥 ∈ dom 𝑁 → ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) |
46 |
45
|
ralrimiv |
⊢ ( 𝐷 ∈ 𝑉 → ∀ 𝑥 ∈ dom 𝑁 ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) |
47 |
|
ffnfv |
⊢ ( 𝑁 : dom 𝑁 ⟶ { 1 , - 1 } ↔ ( 𝑁 Fn dom 𝑁 ∧ ∀ 𝑥 ∈ dom 𝑁 ( 𝑁 ‘ 𝑥 ) ∈ { 1 , - 1 } ) ) |
48 |
32 46 47
|
sylanbrc |
⊢ ( 𝐷 ∈ 𝑉 → 𝑁 : dom 𝑁 ⟶ { 1 , - 1 } ) |
49 |
|
ccatcl |
⊢ ( ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( 𝑧 ++ 𝑤 ) ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) |
50 |
1 33 2
|
psgnvalii |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ++ 𝑤 ) ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( 𝑁 ‘ ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) ) |
51 |
49 50
|
sylan2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑁 ‘ ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) ) |
52 |
1
|
symggrp |
⊢ ( 𝐷 ∈ 𝑉 → 𝑆 ∈ Grp ) |
53 |
52
|
grpmndd |
⊢ ( 𝐷 ∈ 𝑉 → 𝑆 ∈ Mnd ) |
54 |
33 1 5
|
symgtrf |
⊢ ran ( pmTrsp ‘ 𝐷 ) ⊆ ( Base ‘ 𝑆 ) |
55 |
|
sswrd |
⊢ ( ran ( pmTrsp ‘ 𝐷 ) ⊆ ( Base ‘ 𝑆 ) → Word ran ( pmTrsp ‘ 𝐷 ) ⊆ Word ( Base ‘ 𝑆 ) ) |
56 |
54 55
|
ax-mp |
⊢ Word ran ( pmTrsp ‘ 𝐷 ) ⊆ Word ( Base ‘ 𝑆 ) |
57 |
56
|
sseli |
⊢ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → 𝑧 ∈ Word ( Base ‘ 𝑆 ) ) |
58 |
56
|
sseli |
⊢ ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → 𝑤 ∈ Word ( Base ‘ 𝑆 ) ) |
59 |
5 14
|
gsumccat |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑧 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑤 ∈ Word ( Base ‘ 𝑆 ) ) → ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) = ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) |
60 |
53 57 58 59
|
syl3an |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) = ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) |
61 |
60
|
3expb |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) = ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) |
62 |
61
|
fveq2d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑁 ‘ ( 𝑆 Σg ( 𝑧 ++ 𝑤 ) ) ) = ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) ) |
63 |
|
ccatlen |
⊢ ( ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) = ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) ) |
64 |
63
|
adantl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) = ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) ) |
65 |
64
|
oveq2d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) = ( - 1 ↑ ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) ) ) |
66 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
67 |
66
|
a1i |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → - 1 ∈ ℂ ) |
68 |
|
lencl |
⊢ ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 ) |
69 |
68
|
ad2antll |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 ) |
70 |
35
|
ad2antrl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
71 |
67 69 70
|
expaddd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( - 1 ↑ ( ( ♯ ‘ 𝑧 ) + ( ♯ ‘ 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
72 |
65 71
|
eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( - 1 ↑ ( ♯ ‘ ( 𝑧 ++ 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
73 |
51 62 72
|
3eqtr3d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
74 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ 𝑦 = ( 𝑆 Σg 𝑤 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) |
75 |
74
|
fveq2d |
⊢ ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ 𝑦 = ( 𝑆 Σg 𝑤 ) ) → ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) ) |
76 |
|
oveq12 |
⊢ ( ( ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
77 |
75 76
|
eqeqan12d |
⊢ ( ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ 𝑦 = ( 𝑆 Σg 𝑤 ) ) ∧ ( ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
78 |
77
|
an4s |
⊢ ( ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( ( 𝑆 Σg 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑤 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) · ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
79 |
73 78
|
syl5ibrcom |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ) → ( ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
80 |
79
|
rexlimdvva |
⊢ ( 𝐷 ∈ 𝑉 → ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
81 |
1 33 2
|
psgnvali |
⊢ ( 𝑦 ∈ dom 𝑁 → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
82 |
34 81
|
anim12i |
⊢ ( ( 𝑥 ∈ dom 𝑁 ∧ 𝑦 ∈ dom 𝑁 ) → ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
83 |
|
reeanv |
⊢ ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ↔ ( ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
84 |
82 83
|
sylibr |
⊢ ( ( 𝑥 ∈ dom 𝑁 ∧ 𝑦 ∈ dom 𝑁 ) → ∃ 𝑧 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ( ( 𝑥 = ( 𝑆 Σg 𝑧 ) ∧ ( 𝑁 ‘ 𝑥 ) = ( - 1 ↑ ( ♯ ‘ 𝑧 ) ) ) ∧ ( 𝑦 = ( 𝑆 Σg 𝑤 ) ∧ ( 𝑁 ‘ 𝑦 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
85 |
80 84
|
impel |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑥 ∈ dom 𝑁 ∧ 𝑦 ∈ dom 𝑁 ) ) → ( 𝑁 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) |
86 |
11 12 16 22 25 27 48 85
|
isghmd |
⊢ ( 𝐷 ∈ 𝑉 → 𝑁 ∈ ( 𝐹 GrpHom 𝑈 ) ) |