Step |
Hyp |
Ref |
Expression |
1 |
|
psgnghm2.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
psgnghm2.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
3 |
|
psgnghm2.u |
⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
4 |
|
eqid |
⊢ ( 𝑆 ↾s dom 𝑁 ) = ( 𝑆 ↾s dom 𝑁 ) |
5 |
1 2 4 3
|
psgnghm |
⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( ( 𝑆 ↾s dom 𝑁 ) GrpHom 𝑈 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
7 |
1 6
|
sygbasnfpfi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → dom ( 𝑥 ∖ I ) ∈ Fin ) |
8 |
7
|
ralrimiva |
⊢ ( 𝐷 ∈ Fin → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) dom ( 𝑥 ∖ I ) ∈ Fin ) |
9 |
|
rabid2 |
⊢ ( ( Base ‘ 𝑆 ) = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) dom ( 𝑥 ∖ I ) ∈ Fin ) |
10 |
8 9
|
sylibr |
⊢ ( 𝐷 ∈ Fin → ( Base ‘ 𝑆 ) = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
11 |
|
eqid |
⊢ { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
12 |
1 6 11 2
|
psgnfn |
⊢ 𝑁 Fn { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
13 |
12
|
fndmi |
⊢ dom 𝑁 = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } |
14 |
10 13
|
eqtr4di |
⊢ ( 𝐷 ∈ Fin → ( Base ‘ 𝑆 ) = dom 𝑁 ) |
15 |
|
eqimss |
⊢ ( ( Base ‘ 𝑆 ) = dom 𝑁 → ( Base ‘ 𝑆 ) ⊆ dom 𝑁 ) |
16 |
1
|
fvexi |
⊢ 𝑆 ∈ V |
17 |
2
|
fvexi |
⊢ 𝑁 ∈ V |
18 |
17
|
dmex |
⊢ dom 𝑁 ∈ V |
19 |
4 6
|
ressid2 |
⊢ ( ( ( Base ‘ 𝑆 ) ⊆ dom 𝑁 ∧ 𝑆 ∈ V ∧ dom 𝑁 ∈ V ) → ( 𝑆 ↾s dom 𝑁 ) = 𝑆 ) |
20 |
16 18 19
|
mp3an23 |
⊢ ( ( Base ‘ 𝑆 ) ⊆ dom 𝑁 → ( 𝑆 ↾s dom 𝑁 ) = 𝑆 ) |
21 |
14 15 20
|
3syl |
⊢ ( 𝐷 ∈ Fin → ( 𝑆 ↾s dom 𝑁 ) = 𝑆 ) |
22 |
21
|
oveq1d |
⊢ ( 𝐷 ∈ Fin → ( ( 𝑆 ↾s dom 𝑁 ) GrpHom 𝑈 ) = ( 𝑆 GrpHom 𝑈 ) ) |
23 |
5 22
|
eleqtrd |
⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom 𝑈 ) ) |