Metamath Proof Explorer


Theorem psgnghm2

Description: The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnghm2.s 𝑆 = ( SymGrp ‘ 𝐷 )
psgnghm2.n 𝑁 = ( pmSgn ‘ 𝐷 )
psgnghm2.u 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
Assertion psgnghm2 ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom 𝑈 ) )

Proof

Step Hyp Ref Expression
1 psgnghm2.s 𝑆 = ( SymGrp ‘ 𝐷 )
2 psgnghm2.n 𝑁 = ( pmSgn ‘ 𝐷 )
3 psgnghm2.u 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
4 eqid ( 𝑆s dom 𝑁 ) = ( 𝑆s dom 𝑁 )
5 1 2 4 3 psgnghm ( 𝐷 ∈ Fin → 𝑁 ∈ ( ( 𝑆s dom 𝑁 ) GrpHom 𝑈 ) )
6 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
7 1 6 sygbasnfpfi ( ( 𝐷 ∈ Fin ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → dom ( 𝑥 ∖ I ) ∈ Fin )
8 7 ralrimiva ( 𝐷 ∈ Fin → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) dom ( 𝑥 ∖ I ) ∈ Fin )
9 rabid2 ( ( Base ‘ 𝑆 ) = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) dom ( 𝑥 ∖ I ) ∈ Fin )
10 8 9 sylibr ( 𝐷 ∈ Fin → ( Base ‘ 𝑆 ) = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } )
11 eqid { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin } = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin }
12 1 6 11 2 psgnfn 𝑁 Fn { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin }
13 12 fndmi dom 𝑁 = { 𝑥 ∈ ( Base ‘ 𝑆 ) ∣ dom ( 𝑥 ∖ I ) ∈ Fin }
14 10 13 eqtr4di ( 𝐷 ∈ Fin → ( Base ‘ 𝑆 ) = dom 𝑁 )
15 eqimss ( ( Base ‘ 𝑆 ) = dom 𝑁 → ( Base ‘ 𝑆 ) ⊆ dom 𝑁 )
16 1 fvexi 𝑆 ∈ V
17 2 fvexi 𝑁 ∈ V
18 17 dmex dom 𝑁 ∈ V
19 4 6 ressid2 ( ( ( Base ‘ 𝑆 ) ⊆ dom 𝑁𝑆 ∈ V ∧ dom 𝑁 ∈ V ) → ( 𝑆s dom 𝑁 ) = 𝑆 )
20 16 18 19 mp3an23 ( ( Base ‘ 𝑆 ) ⊆ dom 𝑁 → ( 𝑆s dom 𝑁 ) = 𝑆 )
21 14 15 20 3syl ( 𝐷 ∈ Fin → ( 𝑆s dom 𝑁 ) = 𝑆 )
22 21 oveq1d ( 𝐷 ∈ Fin → ( ( 𝑆s dom 𝑁 ) GrpHom 𝑈 ) = ( 𝑆 GrpHom 𝑈 ) )
23 5 22 eleqtrd ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom 𝑈 ) )