| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgninv.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
psgninv.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
| 3 |
|
psgninv.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 4 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 5 |
1 2 4
|
psgnghm2 |
⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 6 |
|
eqid |
⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) |
| 7 |
|
eqid |
⊢ ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 8 |
3 6 7
|
ghminv |
⊢ ( ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ‘ ( 𝑁 ‘ 𝐹 ) ) ) |
| 9 |
5 8
|
sylan |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ‘ ( 𝑁 ‘ 𝐹 ) ) ) |
| 10 |
1 3 6
|
symginv |
⊢ ( 𝐹 ∈ 𝑃 → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝐹 ) ) = ( 𝑁 ‘ ◡ 𝐹 ) ) |
| 13 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
| 14 |
13
|
cnmsgnsubg |
⊢ { 1 , - 1 } ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 15 |
4
|
cnmsgnbas |
⊢ { 1 , - 1 } = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 16 |
3 15
|
ghmf |
⊢ ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑁 : 𝑃 ⟶ { 1 , - 1 } ) |
| 17 |
5 16
|
syl |
⊢ ( 𝐷 ∈ Fin → 𝑁 : 𝑃 ⟶ { 1 , - 1 } ) |
| 18 |
17
|
ffvelcdmda |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } ) |
| 19 |
|
cnex |
⊢ ℂ ∈ V |
| 20 |
19
|
difexi |
⊢ ( ℂ ∖ { 0 } ) ∈ V |
| 21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 22 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 23 |
|
eldifsn |
⊢ ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) |
| 24 |
21 22 23
|
mpbir2an |
⊢ 1 ∈ ( ℂ ∖ { 0 } ) |
| 25 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 26 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 27 |
|
eldifsn |
⊢ ( - 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ) |
| 28 |
25 26 27
|
mpbir2an |
⊢ - 1 ∈ ( ℂ ∖ { 0 } ) |
| 29 |
|
prssi |
⊢ ( ( 1 ∈ ( ℂ ∖ { 0 } ) ∧ - 1 ∈ ( ℂ ∖ { 0 } ) ) → { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) |
| 30 |
24 28 29
|
mp2an |
⊢ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) |
| 31 |
|
ressabs |
⊢ ( ( ( ℂ ∖ { 0 } ) ∈ V ∧ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) → ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 32 |
20 30 31
|
mp2an |
⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 33 |
32
|
eqcomi |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s { 1 , - 1 } ) |
| 34 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 35 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 36 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 37 |
34 35 36
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 38 |
|
eqid |
⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) |
| 39 |
37 13 38
|
invrfval |
⊢ ( invr ‘ ℂfld ) = ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 40 |
33 39 7
|
subginv |
⊢ ( ( { 1 , - 1 } ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } ) → ( ( invr ‘ ℂfld ) ‘ ( 𝑁 ‘ 𝐹 ) ) = ( ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ‘ ( 𝑁 ‘ 𝐹 ) ) ) |
| 41 |
14 18 40
|
sylancr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invr ‘ ℂfld ) ‘ ( 𝑁 ‘ 𝐹 ) ) = ( ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ‘ ( 𝑁 ‘ 𝐹 ) ) ) |
| 42 |
30 18
|
sselid |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ 𝐹 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 43 |
|
eldifsn |
⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑁 ‘ 𝐹 ) ∈ ℂ ∧ ( 𝑁 ‘ 𝐹 ) ≠ 0 ) ) |
| 44 |
42 43
|
sylib |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℂ ∧ ( 𝑁 ‘ 𝐹 ) ≠ 0 ) ) |
| 45 |
|
cnfldinv |
⊢ ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℂ ∧ ( 𝑁 ‘ 𝐹 ) ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ ( 𝑁 ‘ 𝐹 ) ) = ( 1 / ( 𝑁 ‘ 𝐹 ) ) ) |
| 46 |
44 45
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invr ‘ ℂfld ) ‘ ( 𝑁 ‘ 𝐹 ) ) = ( 1 / ( 𝑁 ‘ 𝐹 ) ) ) |
| 47 |
41 46
|
eqtr3d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ‘ ( 𝑁 ‘ 𝐹 ) ) = ( 1 / ( 𝑁 ‘ 𝐹 ) ) ) |
| 48 |
9 12 47
|
3eqtr3d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ◡ 𝐹 ) = ( 1 / ( 𝑁 ‘ 𝐹 ) ) ) |
| 49 |
|
fvex |
⊢ ( 𝑁 ‘ 𝐹 ) ∈ V |
| 50 |
49
|
elpr |
⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } ↔ ( ( 𝑁 ‘ 𝐹 ) = 1 ∨ ( 𝑁 ‘ 𝐹 ) = - 1 ) ) |
| 51 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 52 |
|
oveq2 |
⊢ ( ( 𝑁 ‘ 𝐹 ) = 1 → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 1 / 1 ) ) |
| 53 |
|
id |
⊢ ( ( 𝑁 ‘ 𝐹 ) = 1 → ( 𝑁 ‘ 𝐹 ) = 1 ) |
| 54 |
51 52 53
|
3eqtr4a |
⊢ ( ( 𝑁 ‘ 𝐹 ) = 1 → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 55 |
|
divneg2 |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 1 / 1 ) = ( 1 / - 1 ) ) |
| 56 |
21 21 22 55
|
mp3an |
⊢ - ( 1 / 1 ) = ( 1 / - 1 ) |
| 57 |
51
|
negeqi |
⊢ - ( 1 / 1 ) = - 1 |
| 58 |
56 57
|
eqtr3i |
⊢ ( 1 / - 1 ) = - 1 |
| 59 |
|
oveq2 |
⊢ ( ( 𝑁 ‘ 𝐹 ) = - 1 → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 1 / - 1 ) ) |
| 60 |
|
id |
⊢ ( ( 𝑁 ‘ 𝐹 ) = - 1 → ( 𝑁 ‘ 𝐹 ) = - 1 ) |
| 61 |
58 59 60
|
3eqtr4a |
⊢ ( ( 𝑁 ‘ 𝐹 ) = - 1 → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 62 |
54 61
|
jaoi |
⊢ ( ( ( 𝑁 ‘ 𝐹 ) = 1 ∨ ( 𝑁 ‘ 𝐹 ) = - 1 ) → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 63 |
50 62
|
sylbi |
⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 64 |
18 63
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 1 / ( 𝑁 ‘ 𝐹 ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 65 |
48 64
|
eqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑁 ‘ ◡ 𝐹 ) = ( 𝑁 ‘ 𝐹 ) ) |