Step |
Hyp |
Ref |
Expression |
1 |
|
evpmss.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
evpmss.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
3 |
|
psgnevpmb.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
4 |
|
eldif |
⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ↔ ( 𝐹 ∈ 𝑃 ∧ ¬ 𝐹 ∈ ( pmEven ‘ 𝐷 ) ) ) |
5 |
|
simpr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → 𝐹 ∈ 𝑃 ) |
6 |
5
|
a1d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑁 ‘ 𝐹 ) = 1 → 𝐹 ∈ 𝑃 ) ) |
7 |
6
|
ancrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑁 ‘ 𝐹 ) = 1 → ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |
8 |
1 2 3
|
psgnevpmb |
⊢ ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ ( 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = 1 ) ) ) |
10 |
7 9
|
sylibrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑁 ‘ 𝐹 ) = 1 → 𝐹 ∈ ( pmEven ‘ 𝐷 ) ) ) |
11 |
10
|
con3d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ¬ 𝐹 ∈ ( pmEven ‘ 𝐷 ) → ¬ ( 𝑁 ‘ 𝐹 ) = 1 ) ) |
12 |
11
|
impr |
⊢ ( ( 𝐷 ∈ Fin ∧ ( 𝐹 ∈ 𝑃 ∧ ¬ 𝐹 ∈ ( pmEven ‘ 𝐷 ) ) ) → ¬ ( 𝑁 ‘ 𝐹 ) = 1 ) |
13 |
4 12
|
sylan2b |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ¬ ( 𝑁 ‘ 𝐹 ) = 1 ) |
14 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
15 |
1 3 14
|
psgnghm2 |
⊢ ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
17 |
14
|
cnmsgnbas |
⊢ { 1 , - 1 } = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
18 |
2 17
|
ghmf |
⊢ ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑁 : 𝑃 ⟶ { 1 , - 1 } ) |
19 |
16 18
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝑁 : 𝑃 ⟶ { 1 , - 1 } ) |
20 |
|
eldifi |
⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) → 𝐹 ∈ 𝑃 ) |
21 |
20
|
adantl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → 𝐹 ∈ 𝑃 ) |
22 |
19 21
|
ffvelrnd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } ) |
23 |
|
fvex |
⊢ ( 𝑁 ‘ 𝐹 ) ∈ V |
24 |
23
|
elpr |
⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ { 1 , - 1 } ↔ ( ( 𝑁 ‘ 𝐹 ) = 1 ∨ ( 𝑁 ‘ 𝐹 ) = - 1 ) ) |
25 |
22 24
|
sylib |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( ( 𝑁 ‘ 𝐹 ) = 1 ∨ ( 𝑁 ‘ 𝐹 ) = - 1 ) ) |
26 |
|
orel1 |
⊢ ( ¬ ( 𝑁 ‘ 𝐹 ) = 1 → ( ( ( 𝑁 ‘ 𝐹 ) = 1 ∨ ( 𝑁 ‘ 𝐹 ) = - 1 ) → ( 𝑁 ‘ 𝐹 ) = - 1 ) ) |
27 |
13 25 26
|
sylc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) → ( 𝑁 ‘ 𝐹 ) = - 1 ) |