Step |
Hyp |
Ref |
Expression |
1 |
|
evpmss.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
evpmss.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
3 |
|
psgnevpmb.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
4 |
|
simp2 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = - 1 ) → 𝐹 ∈ 𝑃 ) |
5 |
1 2 3
|
psgnevpm |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝐷 ) ) → ( 𝑁 ‘ 𝐹 ) = 1 ) |
6 |
5
|
ex |
⊢ ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) → ( 𝑁 ‘ 𝐹 ) = 1 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) → ( 𝑁 ‘ 𝐹 ) = 1 ) ) |
8 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
9 |
|
neg1lt0 |
⊢ - 1 < 0 |
10 |
|
0lt1 |
⊢ 0 < 1 |
11 |
|
0re |
⊢ 0 ∈ ℝ |
12 |
|
1re |
⊢ 1 ∈ ℝ |
13 |
8 11 12
|
lttri |
⊢ ( ( - 1 < 0 ∧ 0 < 1 ) → - 1 < 1 ) |
14 |
9 10 13
|
mp2an |
⊢ - 1 < 1 |
15 |
8 14
|
gtneii |
⊢ 1 ≠ - 1 |
16 |
|
neeq1 |
⊢ ( ( 𝑁 ‘ 𝐹 ) = 1 → ( ( 𝑁 ‘ 𝐹 ) ≠ - 1 ↔ 1 ≠ - 1 ) ) |
17 |
15 16
|
mpbiri |
⊢ ( ( 𝑁 ‘ 𝐹 ) = 1 → ( 𝑁 ‘ 𝐹 ) ≠ - 1 ) |
18 |
7 17
|
syl6 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) → ( 𝑁 ‘ 𝐹 ) ≠ - 1 ) ) |
19 |
18
|
necon2bd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑁 ‘ 𝐹 ) = - 1 → ¬ 𝐹 ∈ ( pmEven ‘ 𝐷 ) ) ) |
20 |
19
|
3impia |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = - 1 ) → ¬ 𝐹 ∈ ( pmEven ‘ 𝐷 ) ) |
21 |
4 20
|
eldifd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ ( 𝑁 ‘ 𝐹 ) = - 1 ) → 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |