| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evpmss.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | evpmss.p | ⊢ 𝑃  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | psgnevpmb.n | ⊢ 𝑁  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝐹  ∈  𝑃  ∧  ( 𝑁 ‘ 𝐹 )  =  - 1 )  →  𝐹  ∈  𝑃 ) | 
						
							| 5 | 1 2 3 | psgnevpm | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝐹  ∈  ( pmEven ‘ 𝐷 ) )  →  ( 𝑁 ‘ 𝐹 )  =  1 ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝐷  ∈  Fin  →  ( 𝐹  ∈  ( pmEven ‘ 𝐷 )  →  ( 𝑁 ‘ 𝐹 )  =  1 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( 𝐹  ∈  ( pmEven ‘ 𝐷 )  →  ( 𝑁 ‘ 𝐹 )  =  1 ) ) | 
						
							| 8 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 9 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 10 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 11 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 12 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 13 | 8 11 12 | lttri | ⊢ ( ( - 1  <  0  ∧  0  <  1 )  →  - 1  <  1 ) | 
						
							| 14 | 9 10 13 | mp2an | ⊢ - 1  <  1 | 
						
							| 15 | 8 14 | gtneii | ⊢ 1  ≠  - 1 | 
						
							| 16 |  | neeq1 | ⊢ ( ( 𝑁 ‘ 𝐹 )  =  1  →  ( ( 𝑁 ‘ 𝐹 )  ≠  - 1  ↔  1  ≠  - 1 ) ) | 
						
							| 17 | 15 16 | mpbiri | ⊢ ( ( 𝑁 ‘ 𝐹 )  =  1  →  ( 𝑁 ‘ 𝐹 )  ≠  - 1 ) | 
						
							| 18 | 7 17 | syl6 | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( 𝐹  ∈  ( pmEven ‘ 𝐷 )  →  ( 𝑁 ‘ 𝐹 )  ≠  - 1 ) ) | 
						
							| 19 | 18 | necon2bd | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝐹  ∈  𝑃 )  →  ( ( 𝑁 ‘ 𝐹 )  =  - 1  →  ¬  𝐹  ∈  ( pmEven ‘ 𝐷 ) ) ) | 
						
							| 20 | 19 | 3impia | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝐹  ∈  𝑃  ∧  ( 𝑁 ‘ 𝐹 )  =  - 1 )  →  ¬  𝐹  ∈  ( pmEven ‘ 𝐷 ) ) | 
						
							| 21 | 4 20 | eldifd | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝐹  ∈  𝑃  ∧  ( 𝑁 ‘ 𝐹 )  =  - 1 )  →  𝐹  ∈  ( 𝑃  ∖  ( pmEven ‘ 𝐷 ) ) ) |