| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnval.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
psgnval.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
| 3 |
|
psgnval.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 5 |
2 1 4
|
symgtrf |
⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
| 6 |
5
|
sseli |
⊢ ( 𝑃 ∈ 𝑇 → 𝑃 ∈ ( Base ‘ 𝐺 ) ) |
| 7 |
4
|
gsumws1 |
⊢ ( 𝑃 ∈ ( Base ‘ 𝐺 ) → ( 𝐺 Σg 〈“ 𝑃 ”〉 ) = 𝑃 ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑃 ∈ 𝑇 → ( 𝐺 Σg 〈“ 𝑃 ”〉 ) = 𝑃 ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑃 ∈ 𝑇 → ( 𝑁 ‘ ( 𝐺 Σg 〈“ 𝑃 ”〉 ) ) = ( 𝑁 ‘ 𝑃 ) ) |
| 10 |
1 4
|
elbasfv |
⊢ ( 𝑃 ∈ ( Base ‘ 𝐺 ) → 𝐷 ∈ V ) |
| 11 |
6 10
|
syl |
⊢ ( 𝑃 ∈ 𝑇 → 𝐷 ∈ V ) |
| 12 |
|
s1cl |
⊢ ( 𝑃 ∈ 𝑇 → 〈“ 𝑃 ”〉 ∈ Word 𝑇 ) |
| 13 |
1 2 3
|
psgnvalii |
⊢ ( ( 𝐷 ∈ V ∧ 〈“ 𝑃 ”〉 ∈ Word 𝑇 ) → ( 𝑁 ‘ ( 𝐺 Σg 〈“ 𝑃 ”〉 ) ) = ( - 1 ↑ ( ♯ ‘ 〈“ 𝑃 ”〉 ) ) ) |
| 14 |
11 12 13
|
syl2anc |
⊢ ( 𝑃 ∈ 𝑇 → ( 𝑁 ‘ ( 𝐺 Σg 〈“ 𝑃 ”〉 ) ) = ( - 1 ↑ ( ♯ ‘ 〈“ 𝑃 ”〉 ) ) ) |
| 15 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝑃 ”〉 ) = 1 |
| 16 |
15
|
oveq2i |
⊢ ( - 1 ↑ ( ♯ ‘ 〈“ 𝑃 ”〉 ) ) = ( - 1 ↑ 1 ) |
| 17 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 18 |
|
exp1 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 1 ) = - 1 ) |
| 19 |
17 18
|
ax-mp |
⊢ ( - 1 ↑ 1 ) = - 1 |
| 20 |
16 19
|
eqtri |
⊢ ( - 1 ↑ ( ♯ ‘ 〈“ 𝑃 ”〉 ) ) = - 1 |
| 21 |
14 20
|
eqtrdi |
⊢ ( 𝑃 ∈ 𝑇 → ( 𝑁 ‘ ( 𝐺 Σg 〈“ 𝑃 ”〉 ) ) = - 1 ) |
| 22 |
9 21
|
eqtr3d |
⊢ ( 𝑃 ∈ 𝑇 → ( 𝑁 ‘ 𝑃 ) = - 1 ) |