Step |
Hyp |
Ref |
Expression |
1 |
|
psgnprfval.0 |
⊢ 𝐷 = { 1 , 2 } |
2 |
|
psgnprfval.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
3 |
|
psgnprfval.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
4 |
|
psgnprfval.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
5 |
|
psgnprfval.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
6 |
|
prex |
⊢ { 1 , 2 } ∈ V |
7 |
1 6
|
eqeltri |
⊢ 𝐷 ∈ V |
8 |
2
|
symgid |
⊢ ( 𝐷 ∈ V → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
9 |
7 8
|
ax-mp |
⊢ ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) |
10 |
9
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = ( I ↾ 𝐷 ) |
11 |
|
reseq2 |
⊢ ( 𝐷 = { 1 , 2 } → ( I ↾ 𝐷 ) = ( I ↾ { 1 , 2 } ) ) |
12 |
|
1ex |
⊢ 1 ∈ V |
13 |
|
2nn |
⊢ 2 ∈ ℕ |
14 |
|
residpr |
⊢ ( ( 1 ∈ V ∧ 2 ∈ ℕ ) → ( I ↾ { 1 , 2 } ) = { 〈 1 , 1 〉 , 〈 2 , 2 〉 } ) |
15 |
12 13 14
|
mp2an |
⊢ ( I ↾ { 1 , 2 } ) = { 〈 1 , 1 〉 , 〈 2 , 2 〉 } |
16 |
11 15
|
eqtrdi |
⊢ ( 𝐷 = { 1 , 2 } → ( I ↾ 𝐷 ) = { 〈 1 , 1 〉 , 〈 2 , 2 〉 } ) |
17 |
1 16
|
ax-mp |
⊢ ( I ↾ 𝐷 ) = { 〈 1 , 1 〉 , 〈 2 , 2 〉 } |
18 |
10 17
|
eqtr2i |
⊢ { 〈 1 , 1 〉 , 〈 2 , 2 〉 } = ( 𝐺 Σg ∅ ) |
19 |
18
|
fveq2i |
⊢ ( 𝑁 ‘ { 〈 1 , 1 〉 , 〈 2 , 2 〉 } ) = ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) |
20 |
|
wrd0 |
⊢ ∅ ∈ Word 𝑇 |
21 |
2 4 5
|
psgnvalii |
⊢ ( ( 𝐷 ∈ V ∧ ∅ ∈ Word 𝑇 ) → ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) = ( - 1 ↑ ( ♯ ‘ ∅ ) ) ) |
22 |
7 20 21
|
mp2an |
⊢ ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) = ( - 1 ↑ ( ♯ ‘ ∅ ) ) |
23 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
24 |
23
|
oveq2i |
⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) ) = ( - 1 ↑ 0 ) |
25 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
26 |
|
exp0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
27 |
25 26
|
ax-mp |
⊢ ( - 1 ↑ 0 ) = 1 |
28 |
24 27
|
eqtri |
⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) ) = 1 |
29 |
19 22 28
|
3eqtri |
⊢ ( 𝑁 ‘ { 〈 1 , 1 〉 , 〈 2 , 2 〉 } ) = 1 |