Step |
Hyp |
Ref |
Expression |
1 |
|
psgnprfval.0 |
⊢ 𝐷 = { 1 , 2 } |
2 |
|
psgnprfval.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
3 |
|
psgnprfval.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
4 |
|
psgnprfval.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
5 |
|
psgnprfval.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
6 |
|
prex |
⊢ { 〈 1 , 2 〉 , 〈 2 , 1 〉 } ∈ V |
7 |
6
|
snid |
⊢ { 〈 1 , 2 〉 , 〈 2 , 1 〉 } ∈ { { 〈 1 , 2 〉 , 〈 2 , 1 〉 } } |
8 |
1
|
fveq2i |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ { 1 , 2 } ) |
9 |
8
|
rneqi |
⊢ ran ( pmTrsp ‘ 𝐷 ) = ran ( pmTrsp ‘ { 1 , 2 } ) |
10 |
|
pmtrprfvalrn |
⊢ ran ( pmTrsp ‘ { 1 , 2 } ) = { { 〈 1 , 2 〉 , 〈 2 , 1 〉 } } |
11 |
9 10
|
eqtri |
⊢ ran ( pmTrsp ‘ 𝐷 ) = { { 〈 1 , 2 〉 , 〈 2 , 1 〉 } } |
12 |
7 11
|
eleqtrri |
⊢ { 〈 1 , 2 〉 , 〈 2 , 1 〉 } ∈ ran ( pmTrsp ‘ 𝐷 ) |
13 |
12 4
|
eleqtrri |
⊢ { 〈 1 , 2 〉 , 〈 2 , 1 〉 } ∈ 𝑇 |
14 |
2 4 5
|
psgnpmtr |
⊢ ( { 〈 1 , 2 〉 , 〈 2 , 1 〉 } ∈ 𝑇 → ( 𝑁 ‘ { 〈 1 , 2 〉 , 〈 2 , 1 〉 } ) = - 1 ) |
15 |
13 14
|
ax-mp |
⊢ ( 𝑁 ‘ { 〈 1 , 2 〉 , 〈 2 , 1 〉 } ) = - 1 |