Metamath Proof Explorer


Theorem psgnprfval2

Description: The permutation sign of the transposition for a pair. (Contributed by AV, 10-Dec-2018)

Ref Expression
Hypotheses psgnprfval.0 𝐷 = { 1 , 2 }
psgnprfval.g 𝐺 = ( SymGrp ‘ 𝐷 )
psgnprfval.b 𝐵 = ( Base ‘ 𝐺 )
psgnprfval.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
psgnprfval.n 𝑁 = ( pmSgn ‘ 𝐷 )
Assertion psgnprfval2 ( 𝑁 ‘ { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } ) = - 1

Proof

Step Hyp Ref Expression
1 psgnprfval.0 𝐷 = { 1 , 2 }
2 psgnprfval.g 𝐺 = ( SymGrp ‘ 𝐷 )
3 psgnprfval.b 𝐵 = ( Base ‘ 𝐺 )
4 psgnprfval.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
5 psgnprfval.n 𝑁 = ( pmSgn ‘ 𝐷 )
6 prex { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } ∈ V
7 6 snid { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } ∈ { { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } }
8 1 fveq2i ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ { 1 , 2 } )
9 8 rneqi ran ( pmTrsp ‘ 𝐷 ) = ran ( pmTrsp ‘ { 1 , 2 } )
10 pmtrprfvalrn ran ( pmTrsp ‘ { 1 , 2 } ) = { { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } }
11 9 10 eqtri ran ( pmTrsp ‘ 𝐷 ) = { { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } }
12 7 11 eleqtrri { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } ∈ ran ( pmTrsp ‘ 𝐷 )
13 12 4 eleqtrri { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } ∈ 𝑇
14 2 4 5 psgnpmtr ( { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } ∈ 𝑇 → ( 𝑁 ‘ { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } ) = - 1 )
15 13 14 ax-mp ( 𝑁 ‘ { ⟨ 1 , 2 ⟩ , ⟨ 2 , 1 ⟩ } ) = - 1