Step |
Hyp |
Ref |
Expression |
1 |
|
psgnran.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
psgnran.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
3 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
4 |
3 1
|
sygbasnfpfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → dom ( 𝑄 ∖ I ) ∈ Fin ) |
5 |
4
|
ex |
⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝑃 → dom ( 𝑄 ∖ I ) ∈ Fin ) ) |
6 |
5
|
pm4.71d |
⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝑃 ↔ ( 𝑄 ∈ 𝑃 ∧ dom ( 𝑄 ∖ I ) ∈ Fin ) ) ) |
7 |
3 2 1
|
psgneldm |
⊢ ( 𝑄 ∈ dom 𝑆 ↔ ( 𝑄 ∈ 𝑃 ∧ dom ( 𝑄 ∖ I ) ∈ Fin ) ) |
8 |
6 7
|
bitr4di |
⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝑃 ↔ 𝑄 ∈ dom 𝑆 ) ) |
9 |
|
eqid |
⊢ ran ( pmTrsp ‘ 𝑁 ) = ran ( pmTrsp ‘ 𝑁 ) |
10 |
3 9 2
|
psgnvali |
⊢ ( 𝑄 ∈ dom 𝑆 → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑤 ) ∧ ( 𝑆 ‘ 𝑄 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
11 |
|
lencl |
⊢ ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 ) |
12 |
11
|
nn0zd |
⊢ ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) → ( ♯ ‘ 𝑤 ) ∈ ℤ ) |
13 |
|
m1expcl2 |
⊢ ( ( ♯ ‘ 𝑤 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ { - 1 , 1 } ) |
14 |
|
prcom |
⊢ { - 1 , 1 } = { 1 , - 1 } |
15 |
13 14
|
eleqtrdi |
⊢ ( ( ♯ ‘ 𝑤 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ { 1 , - 1 } ) |
16 |
12 15
|
syl |
⊢ ( 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ { 1 , - 1 } ) |
17 |
16
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ { 1 , - 1 } ) |
18 |
|
eleq1a |
⊢ ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ∈ { 1 , - 1 } → ( ( 𝑆 ‘ 𝑄 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑄 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
20 |
19
|
adantld |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑤 ) ∧ ( 𝑆 ‘ 𝑄 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
21 |
20
|
rexlimdva |
⊢ ( 𝑁 ∈ Fin → ( ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑤 ) ∧ ( 𝑆 ‘ 𝑄 ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
22 |
10 21
|
syl5 |
⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ dom 𝑆 → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
23 |
8 22
|
sylbid |
⊢ ( 𝑁 ∈ Fin → ( 𝑄 ∈ 𝑃 → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) ) |
24 |
23
|
imp |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |