Metamath Proof Explorer


Theorem psgnsn

Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypotheses psgnsn.0 𝐷 = { 𝐴 }
psgnsn.g 𝐺 = ( SymGrp ‘ 𝐷 )
psgnsn.b 𝐵 = ( Base ‘ 𝐺 )
psgnsn.n 𝑁 = ( pmSgn ‘ 𝐷 )
Assertion psgnsn ( ( 𝐴𝑉𝑋𝐵 ) → ( 𝑁𝑋 ) = 1 )

Proof

Step Hyp Ref Expression
1 psgnsn.0 𝐷 = { 𝐴 }
2 psgnsn.g 𝐺 = ( SymGrp ‘ 𝐷 )
3 psgnsn.b 𝐵 = ( Base ‘ 𝐺 )
4 psgnsn.n 𝑁 = ( pmSgn ‘ 𝐷 )
5 eqid ( 0g𝐺 ) = ( 0g𝐺 )
6 5 gsum0 ( 𝐺 Σg ∅ ) = ( 0g𝐺 )
7 2 3 1 symg1bas ( 𝐴𝑉𝐵 = { { ⟨ 𝐴 , 𝐴 ⟩ } } )
8 7 eleq2d ( 𝐴𝑉 → ( 𝑋𝐵𝑋 ∈ { { ⟨ 𝐴 , 𝐴 ⟩ } } ) )
9 8 biimpa ( ( 𝐴𝑉𝑋𝐵 ) → 𝑋 ∈ { { ⟨ 𝐴 , 𝐴 ⟩ } } )
10 elsni ( 𝑋 ∈ { { ⟨ 𝐴 , 𝐴 ⟩ } } → 𝑋 = { ⟨ 𝐴 , 𝐴 ⟩ } )
11 1 reseq2i ( I ↾ 𝐷 ) = ( I ↾ { 𝐴 } )
12 snex { 𝐴 } ∈ V
13 12 snid { 𝐴 } ∈ { { 𝐴 } }
14 1 13 eqeltri 𝐷 ∈ { { 𝐴 } }
15 2 symgid ( 𝐷 ∈ { { 𝐴 } } → ( I ↾ 𝐷 ) = ( 0g𝐺 ) )
16 14 15 mp1i ( 𝐴𝑉 → ( I ↾ 𝐷 ) = ( 0g𝐺 ) )
17 restidsing ( I ↾ { 𝐴 } ) = ( { 𝐴 } × { 𝐴 } )
18 xpsng ( ( 𝐴𝑉𝐴𝑉 ) → ( { 𝐴 } × { 𝐴 } ) = { ⟨ 𝐴 , 𝐴 ⟩ } )
19 18 anidms ( 𝐴𝑉 → ( { 𝐴 } × { 𝐴 } ) = { ⟨ 𝐴 , 𝐴 ⟩ } )
20 17 19 eqtrid ( 𝐴𝑉 → ( I ↾ { 𝐴 } ) = { ⟨ 𝐴 , 𝐴 ⟩ } )
21 11 16 20 3eqtr3a ( 𝐴𝑉 → ( 0g𝐺 ) = { ⟨ 𝐴 , 𝐴 ⟩ } )
22 21 adantr ( ( 𝐴𝑉𝑋𝐵 ) → ( 0g𝐺 ) = { ⟨ 𝐴 , 𝐴 ⟩ } )
23 id ( { ⟨ 𝐴 , 𝐴 ⟩ } = 𝑋 → { ⟨ 𝐴 , 𝐴 ⟩ } = 𝑋 )
24 23 eqcoms ( 𝑋 = { ⟨ 𝐴 , 𝐴 ⟩ } → { ⟨ 𝐴 , 𝐴 ⟩ } = 𝑋 )
25 22 24 sylan9eqr ( ( 𝑋 = { ⟨ 𝐴 , 𝐴 ⟩ } ∧ ( 𝐴𝑉𝑋𝐵 ) ) → ( 0g𝐺 ) = 𝑋 )
26 25 ex ( 𝑋 = { ⟨ 𝐴 , 𝐴 ⟩ } → ( ( 𝐴𝑉𝑋𝐵 ) → ( 0g𝐺 ) = 𝑋 ) )
27 10 26 syl ( 𝑋 ∈ { { ⟨ 𝐴 , 𝐴 ⟩ } } → ( ( 𝐴𝑉𝑋𝐵 ) → ( 0g𝐺 ) = 𝑋 ) )
28 9 27 mpcom ( ( 𝐴𝑉𝑋𝐵 ) → ( 0g𝐺 ) = 𝑋 )
29 6 28 eqtr2id ( ( 𝐴𝑉𝑋𝐵 ) → 𝑋 = ( 𝐺 Σg ∅ ) )
30 29 fveq2d ( ( 𝐴𝑉𝑋𝐵 ) → ( 𝑁𝑋 ) = ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) )
31 1 12 eqeltri 𝐷 ∈ V
32 wrd0 ∅ ∈ Word ∅
33 31 32 pm3.2i ( 𝐷 ∈ V ∧ ∅ ∈ Word ∅ )
34 1 fveq2i ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ { 𝐴 } )
35 pmtrsn ( pmTrsp ‘ { 𝐴 } ) = ∅
36 34 35 eqtri ( pmTrsp ‘ 𝐷 ) = ∅
37 36 rneqi ran ( pmTrsp ‘ 𝐷 ) = ran ∅
38 rn0 ran ∅ = ∅
39 37 38 eqtr2i ∅ = ran ( pmTrsp ‘ 𝐷 )
40 2 39 4 psgnvalii ( ( 𝐷 ∈ V ∧ ∅ ∈ Word ∅ ) → ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) = ( - 1 ↑ ( ♯ ‘ ∅ ) ) )
41 33 40 mp1i ( ( 𝐴𝑉𝑋𝐵 ) → ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) = ( - 1 ↑ ( ♯ ‘ ∅ ) ) )
42 hash0 ( ♯ ‘ ∅ ) = 0
43 42 oveq2i ( - 1 ↑ ( ♯ ‘ ∅ ) ) = ( - 1 ↑ 0 )
44 neg1cn - 1 ∈ ℂ
45 exp0 ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 )
46 44 45 ax-mp ( - 1 ↑ 0 ) = 1
47 43 46 eqtri ( - 1 ↑ ( ♯ ‘ ∅ ) ) = 1
48 47 a1i ( ( 𝐴𝑉𝑋𝐵 ) → ( - 1 ↑ ( ♯ ‘ ∅ ) ) = 1 )
49 30 41 48 3eqtrd ( ( 𝐴𝑉𝑋𝐵 ) → ( 𝑁𝑋 ) = 1 )