Step |
Hyp |
Ref |
Expression |
1 |
|
psgnsn.0 |
⊢ 𝐷 = { 𝐴 } |
2 |
|
psgnsn.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
3 |
|
psgnsn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
4 |
|
psgnsn.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
6 |
5
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
7 |
2 3 1
|
symg1bas |
⊢ ( 𝐴 ∈ 𝑉 → 𝐵 = { { 〈 𝐴 , 𝐴 〉 } } ) |
8 |
7
|
eleq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ { { 〈 𝐴 , 𝐴 〉 } } ) ) |
9 |
8
|
biimpa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ { { 〈 𝐴 , 𝐴 〉 } } ) |
10 |
|
elsni |
⊢ ( 𝑋 ∈ { { 〈 𝐴 , 𝐴 〉 } } → 𝑋 = { 〈 𝐴 , 𝐴 〉 } ) |
11 |
1
|
reseq2i |
⊢ ( I ↾ 𝐷 ) = ( I ↾ { 𝐴 } ) |
12 |
|
snex |
⊢ { 𝐴 } ∈ V |
13 |
12
|
snid |
⊢ { 𝐴 } ∈ { { 𝐴 } } |
14 |
1 13
|
eqeltri |
⊢ 𝐷 ∈ { { 𝐴 } } |
15 |
2
|
symgid |
⊢ ( 𝐷 ∈ { { 𝐴 } } → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
16 |
14 15
|
mp1i |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
17 |
|
restidsing |
⊢ ( I ↾ { 𝐴 } ) = ( { 𝐴 } × { 𝐴 } ) |
18 |
|
xpsng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( { 𝐴 } × { 𝐴 } ) = { 〈 𝐴 , 𝐴 〉 } ) |
19 |
18
|
anidms |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } × { 𝐴 } ) = { 〈 𝐴 , 𝐴 〉 } ) |
20 |
17 19
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ { 𝐴 } ) = { 〈 𝐴 , 𝐴 〉 } ) |
21 |
11 16 20
|
3eqtr3a |
⊢ ( 𝐴 ∈ 𝑉 → ( 0g ‘ 𝐺 ) = { 〈 𝐴 , 𝐴 〉 } ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = { 〈 𝐴 , 𝐴 〉 } ) |
23 |
|
id |
⊢ ( { 〈 𝐴 , 𝐴 〉 } = 𝑋 → { 〈 𝐴 , 𝐴 〉 } = 𝑋 ) |
24 |
23
|
eqcoms |
⊢ ( 𝑋 = { 〈 𝐴 , 𝐴 〉 } → { 〈 𝐴 , 𝐴 〉 } = 𝑋 ) |
25 |
22 24
|
sylan9eqr |
⊢ ( ( 𝑋 = { 〈 𝐴 , 𝐴 〉 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ) → ( 0g ‘ 𝐺 ) = 𝑋 ) |
26 |
25
|
ex |
⊢ ( 𝑋 = { 〈 𝐴 , 𝐴 〉 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = 𝑋 ) ) |
27 |
10 26
|
syl |
⊢ ( 𝑋 ∈ { { 〈 𝐴 , 𝐴 〉 } } → ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = 𝑋 ) ) |
28 |
9 27
|
mpcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = 𝑋 ) |
29 |
6 28
|
eqtr2id |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( 𝐺 Σg ∅ ) ) |
30 |
29
|
fveq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) ) |
31 |
1 12
|
eqeltri |
⊢ 𝐷 ∈ V |
32 |
|
wrd0 |
⊢ ∅ ∈ Word ∅ |
33 |
31 32
|
pm3.2i |
⊢ ( 𝐷 ∈ V ∧ ∅ ∈ Word ∅ ) |
34 |
1
|
fveq2i |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ { 𝐴 } ) |
35 |
|
pmtrsn |
⊢ ( pmTrsp ‘ { 𝐴 } ) = ∅ |
36 |
34 35
|
eqtri |
⊢ ( pmTrsp ‘ 𝐷 ) = ∅ |
37 |
36
|
rneqi |
⊢ ran ( pmTrsp ‘ 𝐷 ) = ran ∅ |
38 |
|
rn0 |
⊢ ran ∅ = ∅ |
39 |
37 38
|
eqtr2i |
⊢ ∅ = ran ( pmTrsp ‘ 𝐷 ) |
40 |
2 39 4
|
psgnvalii |
⊢ ( ( 𝐷 ∈ V ∧ ∅ ∈ Word ∅ ) → ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) = ( - 1 ↑ ( ♯ ‘ ∅ ) ) ) |
41 |
33 40
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) = ( - 1 ↑ ( ♯ ‘ ∅ ) ) ) |
42 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
43 |
42
|
oveq2i |
⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) ) = ( - 1 ↑ 0 ) |
44 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
45 |
|
exp0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
46 |
44 45
|
ax-mp |
⊢ ( - 1 ↑ 0 ) = 1 |
47 |
43 46
|
eqtri |
⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) ) = 1 |
48 |
47
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( - 1 ↑ ( ♯ ‘ ∅ ) ) = 1 ) |
49 |
30 41 48
|
3eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = 1 ) |