Step |
Hyp |
Ref |
Expression |
1 |
|
psgnuni.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
2 |
|
psgnuni.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
3 |
|
psgnuni.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
4 |
|
psgnuni.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) |
5 |
|
psgnuni.x |
⊢ ( 𝜑 → 𝑋 ∈ Word 𝑇 ) |
6 |
|
psgnuni.e |
⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑋 ) ) |
7 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
9 |
8
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
10 |
|
m1expcl |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) |
12 |
11
|
zcnd |
⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) |
13 |
|
lencl |
⊢ ( 𝑋 ∈ Word 𝑇 → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
15 |
14
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
16 |
|
m1expcl |
⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℤ → ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
18 |
17
|
zcnd |
⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ∈ ℂ ) |
19 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
20 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
21 |
|
expne0i |
⊢ ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ≠ 0 ) |
22 |
19 20 15 21
|
mp3an12i |
⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ≠ 0 ) |
23 |
|
m1expaddsub |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑋 ) ) ) = ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) ) |
24 |
9 15 23
|
syl2anc |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑋 ) ) ) = ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) ) |
25 |
|
expsub |
⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) ) → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑋 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) / ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) ) |
26 |
19 20 25
|
mpanl12 |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑋 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) / ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) ) |
27 |
9 15 26
|
syl2anc |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑋 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) / ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) ) |
28 |
|
revcl |
⊢ ( 𝑋 ∈ Word 𝑇 → ( reverse ‘ 𝑋 ) ∈ Word 𝑇 ) |
29 |
5 28
|
syl |
⊢ ( 𝜑 → ( reverse ‘ 𝑋 ) ∈ Word 𝑇 ) |
30 |
|
ccatlen |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( reverse ‘ 𝑋 ) ∈ Word 𝑇 ) → ( ♯ ‘ ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) = ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ ( reverse ‘ 𝑋 ) ) ) ) |
31 |
4 29 30
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) = ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ ( reverse ‘ 𝑋 ) ) ) ) |
32 |
|
revlen |
⊢ ( 𝑋 ∈ Word 𝑇 → ( ♯ ‘ ( reverse ‘ 𝑋 ) ) = ( ♯ ‘ 𝑋 ) ) |
33 |
5 32
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( reverse ‘ 𝑋 ) ) = ( ♯ ‘ 𝑋 ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ ( reverse ‘ 𝑋 ) ) ) = ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) |
35 |
31 34
|
eqtr2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) = ( ♯ ‘ ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) ) ) |
37 |
|
ccatcl |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( reverse ‘ 𝑋 ) ∈ Word 𝑇 ) → ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ∈ Word 𝑇 ) |
38 |
4 29 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ∈ Word 𝑇 ) |
39 |
6
|
fveq2d |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑊 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑋 ) ) ) |
40 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
41 |
2 1 40
|
symgtrinv |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑋 ∈ Word 𝑇 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑋 ) ) = ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) |
42 |
3 5 41
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑋 ) ) = ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) |
43 |
39 42
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑊 ) ) ) |
44 |
43
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑊 ) ) ) ) |
45 |
1
|
symggrp |
⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
46 |
3 45
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
47 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
48 |
3 45 47
|
3syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
49 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
50 |
2 1 49
|
symgtrf |
⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
51 |
|
sswrd |
⊢ ( 𝑇 ⊆ ( Base ‘ 𝐺 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) ) |
52 |
50 51
|
ax-mp |
⊢ Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) |
53 |
52 4
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
54 |
49
|
gsumwcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg 𝑊 ) ∈ ( Base ‘ 𝐺 ) ) |
55 |
48 53 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) ∈ ( Base ‘ 𝐺 ) ) |
56 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
57 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
58 |
49 56 57 40
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐺 Σg 𝑊 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑊 ) ) ) = ( 0g ‘ 𝐺 ) ) |
59 |
46 55 58
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝑊 ) ) ) = ( 0g ‘ 𝐺 ) ) |
60 |
44 59
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) |
61 |
52 29
|
sselid |
⊢ ( 𝜑 → ( reverse ‘ 𝑋 ) ∈ Word ( Base ‘ 𝐺 ) ) |
62 |
49 56
|
gsumccat |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word ( Base ‘ 𝐺 ) ∧ ( reverse ‘ 𝑋 ) ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) ) |
63 |
48 53 61 62
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( reverse ‘ 𝑋 ) ) ) ) |
64 |
1
|
symgid |
⊢ ( 𝐷 ∈ 𝑉 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
65 |
3 64
|
syl |
⊢ ( 𝜑 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
66 |
60 63 65
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) = ( I ↾ 𝐷 ) ) |
67 |
1 2 3 38 66
|
psgnunilem4 |
⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ ( 𝑊 ++ ( reverse ‘ 𝑋 ) ) ) ) = 1 ) |
68 |
36 67
|
eqtrd |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 𝑋 ) ) ) = 1 ) |
69 |
24 27 68
|
3eqtr3d |
⊢ ( 𝜑 → ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) / ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) = 1 ) |
70 |
12 18 22 69
|
diveq1d |
⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) |