Step |
Hyp |
Ref |
Expression |
1 |
|
psgnunilem2.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
2 |
|
psgnunilem2.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
3 |
|
psgnunilem2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
4 |
|
psgnunilem2.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) |
5 |
|
psgnunilem2.id |
⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) |
6 |
|
psgnunilem2.l |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 ) |
7 |
|
psgnunilem2.ix |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝐿 ) ) |
8 |
|
psgnunilem2.a |
⊢ ( 𝜑 → 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) |
9 |
|
psgnunilem2.al |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ) |
10 |
|
psgnunilem2.in |
⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
11 |
|
wrd0 |
⊢ ∅ ∈ Word 𝑇 |
12 |
|
splcl |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ∅ ∈ Word 𝑇 ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ∈ Word 𝑇 ) |
13 |
4 11 12
|
sylancl |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ∈ Word 𝑇 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ∈ Word 𝑇 ) |
15 |
|
fzossfz |
⊢ ( 0 ..^ 𝐿 ) ⊆ ( 0 ... 𝐿 ) |
16 |
15 7
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... 𝐿 ) ) |
17 |
|
elfznn0 |
⊢ ( 𝐼 ∈ ( 0 ... 𝐿 ) → 𝐼 ∈ ℕ0 ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ℕ0 ) |
19 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
20 |
|
nn0addcl |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 𝐼 + 2 ) ∈ ℕ0 ) |
21 |
18 19 20
|
sylancl |
⊢ ( 𝜑 → ( 𝐼 + 2 ) ∈ ℕ0 ) |
22 |
18
|
nn0red |
⊢ ( 𝜑 → 𝐼 ∈ ℝ ) |
23 |
|
nn0addge1 |
⊢ ( ( 𝐼 ∈ ℝ ∧ 2 ∈ ℕ0 ) → 𝐼 ≤ ( 𝐼 + 2 ) ) |
24 |
22 19 23
|
sylancl |
⊢ ( 𝜑 → 𝐼 ≤ ( 𝐼 + 2 ) ) |
25 |
|
elfz2nn0 |
⊢ ( 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 2 ) ∈ ℕ0 ∧ 𝐼 ≤ ( 𝐼 + 2 ) ) ) |
26 |
18 21 24 25
|
syl3anbrc |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
27 |
1 2 3 4 5 6 7 8 9
|
psgnunilem5 |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ) |
28 |
|
fzofzp1 |
⊢ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) → ( ( 𝐼 + 1 ) + 1 ) ∈ ( 0 ... 𝐿 ) ) |
29 |
27 28
|
syl |
⊢ ( 𝜑 → ( ( 𝐼 + 1 ) + 1 ) ∈ ( 0 ... 𝐿 ) ) |
30 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
31 |
30
|
oveq2i |
⊢ ( 𝐼 + 2 ) = ( 𝐼 + ( 1 + 1 ) ) |
32 |
18
|
nn0cnd |
⊢ ( 𝜑 → 𝐼 ∈ ℂ ) |
33 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
34 |
32 33 33
|
addassd |
⊢ ( 𝜑 → ( ( 𝐼 + 1 ) + 1 ) = ( 𝐼 + ( 1 + 1 ) ) ) |
35 |
31 34
|
eqtr4id |
⊢ ( 𝜑 → ( 𝐼 + 2 ) = ( ( 𝐼 + 1 ) + 1 ) ) |
36 |
6
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... 𝐿 ) ) |
37 |
29 35 36
|
3eltr4d |
⊢ ( 𝜑 → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
38 |
11
|
a1i |
⊢ ( 𝜑 → ∅ ∈ Word 𝑇 ) |
39 |
4 26 37 38
|
spllen |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) ) |
40 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
41 |
40
|
oveq1i |
⊢ ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = ( 0 − ( ( 𝐼 + 2 ) − 𝐼 ) ) |
42 |
|
df-neg |
⊢ - ( ( 𝐼 + 2 ) − 𝐼 ) = ( 0 − ( ( 𝐼 + 2 ) − 𝐼 ) ) |
43 |
41 42
|
eqtr4i |
⊢ ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = - ( ( 𝐼 + 2 ) − 𝐼 ) |
44 |
|
2cn |
⊢ 2 ∈ ℂ |
45 |
|
pncan2 |
⊢ ( ( 𝐼 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝐼 + 2 ) − 𝐼 ) = 2 ) |
46 |
32 44 45
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐼 + 2 ) − 𝐼 ) = 2 ) |
47 |
46
|
negeqd |
⊢ ( 𝜑 → - ( ( 𝐼 + 2 ) − 𝐼 ) = - 2 ) |
48 |
43 47
|
eqtrid |
⊢ ( 𝜑 → ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = - 2 ) |
49 |
6 48
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = ( 𝐿 + - 2 ) ) |
50 |
|
elfzel2 |
⊢ ( 𝐼 ∈ ( 0 ... 𝐿 ) → 𝐿 ∈ ℤ ) |
51 |
16 50
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
52 |
51
|
zcnd |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
53 |
|
negsub |
⊢ ( ( 𝐿 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝐿 + - 2 ) = ( 𝐿 − 2 ) ) |
54 |
52 44 53
|
sylancl |
⊢ ( 𝜑 → ( 𝐿 + - 2 ) = ( 𝐿 − 2 ) ) |
55 |
39 49 54
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( 𝐿 − 2 ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( 𝐿 − 2 ) ) |
57 |
|
splid |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ∧ ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) = 𝑊 ) |
58 |
4 26 37 57
|
syl12anc |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) = 𝑊 ) |
59 |
58
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) ) = ( 𝐺 Σg 𝑊 ) ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) ) = ( 𝐺 Σg 𝑊 ) ) |
61 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
62 |
1
|
symggrp |
⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
63 |
3 62
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
64 |
63
|
grpmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → 𝐺 ∈ Mnd ) |
66 |
2 1 61
|
symgtrf |
⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
67 |
|
sswrd |
⊢ ( 𝑇 ⊆ ( Base ‘ 𝐺 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) ) |
68 |
66 67
|
ax-mp |
⊢ Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) |
69 |
68 4
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
71 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
72 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
73 |
|
swrdcl |
⊢ ( 𝑊 ∈ Word ( Base ‘ 𝐺 ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ∈ Word ( Base ‘ 𝐺 ) ) |
74 |
69 73
|
syl |
⊢ ( 𝜑 → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ∈ Word ( Base ‘ 𝐺 ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ∈ Word ( Base ‘ 𝐺 ) ) |
76 |
|
wrd0 |
⊢ ∅ ∈ Word ( Base ‘ 𝐺 ) |
77 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ∅ ∈ Word ( Base ‘ 𝐺 ) ) |
78 |
6
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝐿 ) ) |
79 |
27 78
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
80 |
|
swrds2 |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) |
81 |
4 18 79 80
|
syl3anc |
⊢ ( 𝜑 → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) |
82 |
81
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) = ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) ) |
83 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
84 |
4 83
|
syl |
⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
85 |
78
|
feq2d |
⊢ ( 𝜑 → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ↔ 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑇 ) ) |
86 |
84 85
|
mpbid |
⊢ ( 𝜑 → 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑇 ) |
87 |
86 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) ∈ 𝑇 ) |
88 |
66 87
|
sselid |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ) |
89 |
86 27
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ 𝑇 ) |
90 |
66 89
|
sselid |
⊢ ( 𝜑 → ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ ( Base ‘ 𝐺 ) ) |
91 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
92 |
61 91
|
gsumws2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) = ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
93 |
64 88 90 92
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”〉 ) = ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
94 |
1 61 91
|
symgov |
⊢ ( ( ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
95 |
88 90 94
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
96 |
82 93 95
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) = ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) = ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
98 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) |
99 |
1
|
symgid |
⊢ ( 𝐷 ∈ 𝑉 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
100 |
3 99
|
syl |
⊢ ( 𝜑 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
101 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
102 |
101
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
103 |
100 102
|
eqtr4di |
⊢ ( 𝜑 → ( I ↾ 𝐷 ) = ( 𝐺 Σg ∅ ) ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( I ↾ 𝐷 ) = ( 𝐺 Σg ∅ ) ) |
105 |
97 98 104
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) = ( 𝐺 Σg ∅ ) ) |
106 |
61 65 70 71 72 75 77 105
|
gsumspl |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) ) = ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) ) |
107 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) |
108 |
60 106 107
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( I ↾ 𝐷 ) ) |
109 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) → ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ↔ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( 𝐿 − 2 ) ) ) |
110 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) ) |
111 |
110
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) → ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( I ↾ 𝐷 ) ) ) |
112 |
109 111
|
anbi12d |
⊢ ( 𝑥 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) → ( ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ( ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( I ↾ 𝐷 ) ) ) ) |
113 |
112
|
rspcev |
⊢ ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ∈ Word 𝑇 ∧ ( ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ∅ 〉 ) ) = ( I ↾ 𝐷 ) ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
114 |
14 56 108 113
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
115 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
116 |
114 115
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) |
117 |
116
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
118 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝑊 ∈ Word 𝑇 ) |
119 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝑟 ∈ 𝑇 ) |
120 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝑠 ∈ 𝑇 ) |
121 |
119 120
|
s2cld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 〈“ 𝑟 𝑠 ”〉 ∈ Word 𝑇 ) |
122 |
|
splcl |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 〈“ 𝑟 𝑠 ”〉 ∈ Word 𝑇 ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ∈ Word 𝑇 ) |
123 |
118 121 122
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ∈ Word 𝑇 ) |
124 |
123
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ∈ Word 𝑇 ) |
125 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐺 ∈ Mnd ) |
126 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
127 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
128 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
129 |
68 121
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 〈“ 𝑟 𝑠 ”〉 ∈ Word ( Base ‘ 𝐺 ) ) |
130 |
129
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 〈“ 𝑟 𝑠 ”〉 ∈ Word ( Base ‘ 𝐺 ) ) |
131 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ∈ Word ( Base ‘ 𝐺 ) ) |
132 |
|
simprr1 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ) |
133 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) = ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) ) |
134 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝐺 ∈ Mnd ) |
135 |
66
|
a1i |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
136 |
135
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑇 ) → 𝑟 ∈ ( Base ‘ 𝐺 ) ) |
137 |
136
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝑟 ∈ ( Base ‘ 𝐺 ) ) |
138 |
135
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → 𝑠 ∈ ( Base ‘ 𝐺 ) ) |
139 |
138
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝑠 ∈ ( Base ‘ 𝐺 ) ) |
140 |
61 91
|
gsumws2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑟 ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg 〈“ 𝑟 𝑠 ”〉 ) = ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 ) ) |
141 |
134 137 139 140
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝐺 Σg 〈“ 𝑟 𝑠 ”〉 ) = ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 ) ) |
142 |
1 61 91
|
symgov |
⊢ ( ( 𝑟 ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 ) = ( 𝑟 ∘ 𝑠 ) ) |
143 |
137 139 142
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 ) = ( 𝑟 ∘ 𝑠 ) ) |
144 |
141 143
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝐺 Σg 〈“ 𝑟 𝑠 ”〉 ) = ( 𝑟 ∘ 𝑠 ) ) |
145 |
144
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg 〈“ 𝑟 𝑠 ”〉 ) = ( 𝑟 ∘ 𝑠 ) ) |
146 |
132 133 145
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg 〈“ 𝑟 𝑠 ”〉 ) = ( 𝐺 Σg ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) ) ) |
147 |
61 125 126 127 128 130 131 146
|
gsumspl |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) ) ) |
148 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr 〈 𝐼 , ( 𝐼 + 2 ) 〉 ) 〉 ) ) = ( 𝐺 Σg 𝑊 ) ) |
149 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) |
150 |
147 148 149
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ) |
151 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
152 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
153 |
118 151 152 121
|
spllen |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) ) |
154 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) = 2 |
155 |
154
|
oveq1i |
⊢ ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = ( 2 − ( ( 𝐼 + 2 ) − 𝐼 ) ) |
156 |
46
|
oveq2d |
⊢ ( 𝜑 → ( 2 − ( ( 𝐼 + 2 ) − 𝐼 ) ) = ( 2 − 2 ) ) |
157 |
44
|
subidi |
⊢ ( 2 − 2 ) = 0 |
158 |
156 157
|
eqtrdi |
⊢ ( 𝜑 → ( 2 − ( ( 𝐼 + 2 ) − 𝐼 ) ) = 0 ) |
159 |
155 158
|
eqtrid |
⊢ ( 𝜑 → ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = 0 ) |
160 |
159
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = ( ( ♯ ‘ 𝑊 ) + 0 ) ) |
161 |
6 52
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
162 |
161
|
addid1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + 0 ) = ( ♯ ‘ 𝑊 ) ) |
163 |
160 162 6
|
3eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = 𝐿 ) |
164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = 𝐿 ) |
165 |
153 164
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) |
166 |
165
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) |
167 |
150 166
|
jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) ) |
168 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ) |
169 |
|
simprr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐴 ∈ dom ( 𝑠 ∖ I ) ) |
170 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
171 |
|
2nn |
⊢ 2 ∈ ℕ |
172 |
|
1lt2 |
⊢ 1 < 2 |
173 |
|
elfzo0 |
⊢ ( 1 ∈ ( 0 ..^ 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2 ) ) |
174 |
170 171 172 173
|
mpbir3an |
⊢ 1 ∈ ( 0 ..^ 2 ) |
175 |
154
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) = ( 0 ..^ 2 ) |
176 |
174 175
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) |
177 |
176
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 1 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) ) |
178 |
118 151 152 121 177
|
splfv2a |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) = ( 〈“ 𝑟 𝑠 ”〉 ‘ 1 ) ) |
179 |
|
s2fv1 |
⊢ ( 𝑠 ∈ 𝑇 → ( 〈“ 𝑟 𝑠 ”〉 ‘ 1 ) = 𝑠 ) |
180 |
179
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 〈“ 𝑟 𝑠 ”〉 ‘ 1 ) = 𝑠 ) |
181 |
178 180
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) = 𝑠 ) |
182 |
181
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) = 𝑠 ) |
183 |
182
|
difeq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) = ( 𝑠 ∖ I ) ) |
184 |
183
|
dmeqd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) = dom ( 𝑠 ∖ I ) ) |
185 |
169 184
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ) |
186 |
|
fzosplitsni |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) ) |
187 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
188 |
186 187
|
eleq2s |
⊢ ( 𝐼 ∈ ℕ0 → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) ) |
189 |
18 188
|
syl |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) ) |
190 |
189
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) ) |
191 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑊 ‘ 𝑘 ) = ( 𝑊 ‘ 𝑗 ) ) |
192 |
191
|
difeq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑊 ‘ 𝑘 ) ∖ I ) = ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
193 |
192
|
dmeqd |
⊢ ( 𝑘 = 𝑗 → dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
194 |
193
|
eleq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) ) |
195 |
194
|
notbid |
⊢ ( 𝑘 = 𝑗 → ( ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) ) |
196 |
195
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
197 |
9 196
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
198 |
197
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
199 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 𝑊 ∈ Word 𝑇 ) |
200 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ) |
201 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
202 |
121
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 〈“ 𝑟 𝑠 ”〉 ∈ Word 𝑇 ) |
203 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 𝑗 ∈ ( 0 ..^ 𝐼 ) ) |
204 |
199 200 201 202 203
|
splfv1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) = ( 𝑊 ‘ 𝑗 ) ) |
205 |
204
|
difeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) = ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
206 |
205
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑗 ) ∖ I ) ) |
207 |
198 206
|
neleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) |
208 |
207
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝑗 ∈ ( 0 ..^ 𝐼 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
209 |
208
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝐼 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
210 |
|
simprr3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) |
211 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
212 |
|
2pos |
⊢ 0 < 2 |
213 |
|
elfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 2 ) ↔ ( 0 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 0 < 2 ) ) |
214 |
211 171 212 213
|
mpbir3an |
⊢ 0 ∈ ( 0 ..^ 2 ) |
215 |
214 175
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) |
216 |
215
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) ) |
217 |
118 151 152 121 216
|
splfv2a |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 0 ) ) = ( 〈“ 𝑟 𝑠 ”〉 ‘ 0 ) ) |
218 |
32
|
addid1d |
⊢ ( 𝜑 → ( 𝐼 + 0 ) = 𝐼 ) |
219 |
218
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝐼 + 0 ) = 𝐼 ) |
220 |
219
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 0 ) ) = ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ) |
221 |
|
s2fv0 |
⊢ ( 𝑟 ∈ 𝑇 → ( 〈“ 𝑟 𝑠 ”〉 ‘ 0 ) = 𝑟 ) |
222 |
221
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 〈“ 𝑟 𝑠 ”〉 ‘ 0 ) = 𝑟 ) |
223 |
217 220 222
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) = 𝑟 ) |
224 |
223
|
difeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) = ( 𝑟 ∖ I ) ) |
225 |
224
|
dmeqd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) = dom ( 𝑟 ∖ I ) ) |
226 |
225
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ↔ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
227 |
226
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ↔ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
228 |
210 227
|
mtbird |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ) |
229 |
|
fveq2 |
⊢ ( 𝑗 = 𝐼 → ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) = ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ) |
230 |
229
|
difeq1d |
⊢ ( 𝑗 = 𝐼 → ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) = ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ) |
231 |
230
|
dmeqd |
⊢ ( 𝑗 = 𝐼 → dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) = dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ) |
232 |
231
|
eleq2d |
⊢ ( 𝑗 = 𝐼 → ( 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ) ) |
233 |
232
|
notbid |
⊢ ( 𝑗 = 𝐼 → ( ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ∖ I ) ) ) |
234 |
228 233
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 = 𝐼 → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
235 |
209 234
|
jaod |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
236 |
190 235
|
sylbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
237 |
236
|
ralrimiv |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) |
238 |
168 185 237
|
3jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
239 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) ) |
240 |
239
|
eqeq1d |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ) ) |
241 |
|
fveqeq2 |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( ♯ ‘ 𝑤 ) = 𝐿 ↔ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) ) |
242 |
240 241
|
anbi12d |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ↔ ( ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) ) ) |
243 |
|
fveq1 |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( 𝑤 ‘ ( 𝐼 + 1 ) ) = ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ) |
244 |
243
|
difeq1d |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) = ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ) |
245 |
244
|
dmeqd |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) = dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ) |
246 |
245
|
eleq2d |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ) ) |
247 |
|
fveq1 |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( 𝑤 ‘ 𝑗 ) = ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ) |
248 |
247
|
difeq1d |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( 𝑤 ‘ 𝑗 ) ∖ I ) = ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) |
249 |
248
|
dmeqd |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) = dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) |
250 |
249
|
eleq2d |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
251 |
250
|
notbid |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
252 |
251
|
ralbidv |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ↔ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) |
253 |
246 252
|
3anbi23d |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ↔ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) ) |
254 |
242 253
|
anbi12d |
⊢ ( 𝑤 = ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) ) ) |
255 |
254
|
rspcev |
⊢ ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice 〈 𝐼 , ( 𝐼 + 2 ) , 〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ∖ I ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) |
256 |
124 167 238 255
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ∧ ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) |
257 |
256
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑠 ∈ 𝑇 ) ) → ( ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
258 |
257
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
259 |
2 3 87 89 8
|
psgnunilem1 |
⊢ ( 𝜑 → ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( ( 𝑊 ‘ 𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
260 |
117 258 259
|
mpjaod |
⊢ ( 𝜑 → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) |