| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnunilem2.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | psgnunilem2.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 3 |  | psgnunilem2.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | psgnunilem2.w | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝑇 ) | 
						
							| 5 |  | psgnunilem2.id | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 6 |  | psgnunilem2.l | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  =  𝐿 ) | 
						
							| 7 |  | psgnunilem2.ix | ⊢ ( 𝜑  →  𝐼  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 8 |  | psgnunilem2.a | ⊢ ( 𝜑  →  𝐴  ∈  dom  ( ( 𝑊 ‘ 𝐼 )  ∖   I  ) ) | 
						
							| 9 |  | psgnunilem2.al | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ..^ 𝐼 ) ¬  𝐴  ∈  dom  ( ( 𝑊 ‘ 𝑘 )  ∖   I  ) ) | 
						
							| 10 |  | psgnunilem2.in | ⊢ ( 𝜑  →  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 11 |  | wrd0 | ⊢ ∅  ∈  Word  𝑇 | 
						
							| 12 |  | splcl | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  ∅  ∈  Word  𝑇 )  →  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 )  ∈  Word  𝑇 ) | 
						
							| 13 | 4 11 12 | sylancl | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 )  ∈  Word  𝑇 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 )  ∈  Word  𝑇 ) | 
						
							| 15 |  | fzossfz | ⊢ ( 0 ..^ 𝐿 )  ⊆  ( 0 ... 𝐿 ) | 
						
							| 16 | 15 7 | sselid | ⊢ ( 𝜑  →  𝐼  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 17 |  | elfznn0 | ⊢ ( 𝐼  ∈  ( 0 ... 𝐿 )  →  𝐼  ∈  ℕ0 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  𝐼  ∈  ℕ0 ) | 
						
							| 19 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 20 |  | nn0addcl | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  2  ∈  ℕ0 )  →  ( 𝐼  +  2 )  ∈  ℕ0 ) | 
						
							| 21 | 18 19 20 | sylancl | ⊢ ( 𝜑  →  ( 𝐼  +  2 )  ∈  ℕ0 ) | 
						
							| 22 | 18 | nn0red | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 23 |  | nn0addge1 | ⊢ ( ( 𝐼  ∈  ℝ  ∧  2  ∈  ℕ0 )  →  𝐼  ≤  ( 𝐼  +  2 ) ) | 
						
							| 24 | 22 19 23 | sylancl | ⊢ ( 𝜑  →  𝐼  ≤  ( 𝐼  +  2 ) ) | 
						
							| 25 |  | elfz2nn0 | ⊢ ( 𝐼  ∈  ( 0 ... ( 𝐼  +  2 ) )  ↔  ( 𝐼  ∈  ℕ0  ∧  ( 𝐼  +  2 )  ∈  ℕ0  ∧  𝐼  ≤  ( 𝐼  +  2 ) ) ) | 
						
							| 26 | 18 21 24 25 | syl3anbrc | ⊢ ( 𝜑  →  𝐼  ∈  ( 0 ... ( 𝐼  +  2 ) ) ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 | psgnunilem5 | ⊢ ( 𝜑  →  ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 28 |  | fzofzp1 | ⊢ ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  →  ( ( 𝐼  +  1 )  +  1 )  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  ( ( 𝐼  +  1 )  +  1 )  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 30 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 31 | 30 | oveq2i | ⊢ ( 𝐼  +  2 )  =  ( 𝐼  +  ( 1  +  1 ) ) | 
						
							| 32 | 18 | nn0cnd | ⊢ ( 𝜑  →  𝐼  ∈  ℂ ) | 
						
							| 33 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 34 | 32 33 33 | addassd | ⊢ ( 𝜑  →  ( ( 𝐼  +  1 )  +  1 )  =  ( 𝐼  +  ( 1  +  1 ) ) ) | 
						
							| 35 | 31 34 | eqtr4id | ⊢ ( 𝜑  →  ( 𝐼  +  2 )  =  ( ( 𝐼  +  1 )  +  1 ) ) | 
						
							| 36 | 6 | oveq2d | ⊢ ( 𝜑  →  ( 0 ... ( ♯ ‘ 𝑊 ) )  =  ( 0 ... 𝐿 ) ) | 
						
							| 37 | 29 35 36 | 3eltr4d | ⊢ ( 𝜑  →  ( 𝐼  +  2 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 38 | 11 | a1i | ⊢ ( 𝜑  →  ∅  ∈  Word  𝑇 ) | 
						
							| 39 | 4 26 37 38 | spllen | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  +  ( ( ♯ ‘ ∅ )  −  ( ( 𝐼  +  2 )  −  𝐼 ) ) ) ) | 
						
							| 40 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 41 | 40 | oveq1i | ⊢ ( ( ♯ ‘ ∅ )  −  ( ( 𝐼  +  2 )  −  𝐼 ) )  =  ( 0  −  ( ( 𝐼  +  2 )  −  𝐼 ) ) | 
						
							| 42 |  | df-neg | ⊢ - ( ( 𝐼  +  2 )  −  𝐼 )  =  ( 0  −  ( ( 𝐼  +  2 )  −  𝐼 ) ) | 
						
							| 43 | 41 42 | eqtr4i | ⊢ ( ( ♯ ‘ ∅ )  −  ( ( 𝐼  +  2 )  −  𝐼 ) )  =  - ( ( 𝐼  +  2 )  −  𝐼 ) | 
						
							| 44 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 45 |  | pncan2 | ⊢ ( ( 𝐼  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( ( 𝐼  +  2 )  −  𝐼 )  =  2 ) | 
						
							| 46 | 32 44 45 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐼  +  2 )  −  𝐼 )  =  2 ) | 
						
							| 47 | 46 | negeqd | ⊢ ( 𝜑  →  - ( ( 𝐼  +  2 )  −  𝐼 )  =  - 2 ) | 
						
							| 48 | 43 47 | eqtrid | ⊢ ( 𝜑  →  ( ( ♯ ‘ ∅ )  −  ( ( 𝐼  +  2 )  −  𝐼 ) )  =  - 2 ) | 
						
							| 49 | 6 48 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  +  ( ( ♯ ‘ ∅ )  −  ( ( 𝐼  +  2 )  −  𝐼 ) ) )  =  ( 𝐿  +  - 2 ) ) | 
						
							| 50 |  | elfzel2 | ⊢ ( 𝐼  ∈  ( 0 ... 𝐿 )  →  𝐿  ∈  ℤ ) | 
						
							| 51 | 16 50 | syl | ⊢ ( 𝜑  →  𝐿  ∈  ℤ ) | 
						
							| 52 | 51 | zcnd | ⊢ ( 𝜑  →  𝐿  ∈  ℂ ) | 
						
							| 53 |  | negsub | ⊢ ( ( 𝐿  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( 𝐿  +  - 2 )  =  ( 𝐿  −  2 ) ) | 
						
							| 54 | 52 44 53 | sylancl | ⊢ ( 𝜑  →  ( 𝐿  +  - 2 )  =  ( 𝐿  −  2 ) ) | 
						
							| 55 | 39 49 54 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) )  =  ( 𝐿  −  2 ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) )  =  ( 𝐿  −  2 ) ) | 
						
							| 57 |  | splid | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝐼  ∈  ( 0 ... ( 𝐼  +  2 ) )  ∧  ( 𝐼  +  2 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) 〉 )  =  𝑊 ) | 
						
							| 58 | 4 26 37 57 | syl12anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) 〉 )  =  𝑊 ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) 〉 ) )  =  ( 𝐺  Σg  𝑊 ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) 〉 ) )  =  ( 𝐺  Σg  𝑊 ) ) | 
						
							| 61 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 62 | 1 | symggrp | ⊢ ( 𝐷  ∈  𝑉  →  𝐺  ∈  Grp ) | 
						
							| 63 | 3 62 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 64 | 63 | grpmndd | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  𝐺  ∈  Mnd ) | 
						
							| 66 | 2 1 61 | symgtrf | ⊢ 𝑇  ⊆  ( Base ‘ 𝐺 ) | 
						
							| 67 |  | sswrd | ⊢ ( 𝑇  ⊆  ( Base ‘ 𝐺 )  →  Word  𝑇  ⊆  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 68 | 66 67 | ax-mp | ⊢ Word  𝑇  ⊆  Word  ( Base ‘ 𝐺 ) | 
						
							| 69 | 68 4 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  𝑊  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 71 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  𝐼  ∈  ( 0 ... ( 𝐼  +  2 ) ) ) | 
						
							| 72 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( 𝐼  +  2 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 73 |  | swrdcl | ⊢ ( 𝑊  ∈  Word  ( Base ‘ 𝐺 )  →  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 )  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 74 | 69 73 | syl | ⊢ ( 𝜑  →  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 )  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 )  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 76 |  | wrd0 | ⊢ ∅  ∈  Word  ( Base ‘ 𝐺 ) | 
						
							| 77 | 76 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ∅  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 78 | 6 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ 𝐿 ) ) | 
						
							| 79 | 27 78 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐼  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 80 |  | swrds2 | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝐼  ∈  ℕ0  ∧  ( 𝐼  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 )  =  〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼  +  1 ) ) ”〉 ) | 
						
							| 81 | 4 18 79 80 | syl3anc | ⊢ ( 𝜑  →  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 )  =  〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼  +  1 ) ) ”〉 ) | 
						
							| 82 | 81 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) )  =  ( 𝐺  Σg  〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼  +  1 ) ) ”〉 ) ) | 
						
							| 83 |  | wrdf | ⊢ ( 𝑊  ∈  Word  𝑇  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) | 
						
							| 84 | 4 83 | syl | ⊢ ( 𝜑  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) | 
						
							| 85 | 78 | feq2d | ⊢ ( 𝜑  →  ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇  ↔  𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑇 ) ) | 
						
							| 86 | 84 85 | mpbid | ⊢ ( 𝜑  →  𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑇 ) | 
						
							| 87 | 86 7 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑊 ‘ 𝐼 )  ∈  𝑇 ) | 
						
							| 88 | 66 87 | sselid | ⊢ ( 𝜑  →  ( 𝑊 ‘ 𝐼 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 89 | 86 27 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( 𝐼  +  1 ) )  ∈  𝑇 ) | 
						
							| 90 | 66 89 | sselid | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( 𝐼  +  1 ) )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 91 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 92 | 61 91 | gsumws2 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑊 ‘ 𝐼 )  ∈  ( Base ‘ 𝐺 )  ∧  ( 𝑊 ‘ ( 𝐼  +  1 ) )  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐺  Σg  〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼  +  1 ) ) ”〉 )  =  ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 93 | 64 88 90 92 | syl3anc | ⊢ ( 𝜑  →  ( 𝐺  Σg  〈“ ( 𝑊 ‘ 𝐼 ) ( 𝑊 ‘ ( 𝐼  +  1 ) ) ”〉 )  =  ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 94 | 1 61 91 | symgov | ⊢ ( ( ( 𝑊 ‘ 𝐼 )  ∈  ( Base ‘ 𝐺 )  ∧  ( 𝑊 ‘ ( 𝐼  +  1 ) )  ∈  ( Base ‘ 𝐺 ) )  →  ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 95 | 88 90 94 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑊 ‘ 𝐼 ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 96 | 82 93 95 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) )  =  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( 𝐺  Σg  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) )  =  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 98 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 99 | 1 | symgid | ⊢ ( 𝐷  ∈  𝑉  →  (  I   ↾  𝐷 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 100 | 3 99 | syl | ⊢ ( 𝜑  →  (  I   ↾  𝐷 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 101 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 102 | 101 | gsum0 | ⊢ ( 𝐺  Σg  ∅ )  =  ( 0g ‘ 𝐺 ) | 
						
							| 103 | 100 102 | eqtr4di | ⊢ ( 𝜑  →  (  I   ↾  𝐷 )  =  ( 𝐺  Σg  ∅ ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  (  I   ↾  𝐷 )  =  ( 𝐺  Σg  ∅ ) ) | 
						
							| 105 | 97 98 104 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( 𝐺  Σg  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) )  =  ( 𝐺  Σg  ∅ ) ) | 
						
							| 106 | 61 65 70 71 72 75 77 105 | gsumspl | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) 〉 ) )  =  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) ) ) | 
						
							| 107 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 108 | 60 106 107 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 109 |  | fveqeq2 | ⊢ ( 𝑥  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 )  →  ( ( ♯ ‘ 𝑥 )  =  ( 𝐿  −  2 )  ↔  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) )  =  ( 𝐿  −  2 ) ) ) | 
						
							| 110 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 )  →  ( 𝐺  Σg  𝑥 )  =  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) ) ) | 
						
							| 111 | 110 | eqeq1d | ⊢ ( 𝑥  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 )  →  ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ↔  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 112 | 109 111 | anbi12d | ⊢ ( 𝑥  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 )  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  ↔  ( ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) )  =  (  I   ↾  𝐷 ) ) ) ) | 
						
							| 113 | 112 | rspcev | ⊢ ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 )  ∈  Word  𝑇  ∧  ( ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ∅ 〉 ) )  =  (  I   ↾  𝐷 ) ) )  →  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 114 | 14 56 108 113 | syl12anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 115 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 116 | 114 115 | pm2.21dd | ⊢ ( ( 𝜑  ∧  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) | 
						
							| 117 | 116 | ex | ⊢ ( 𝜑  →  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) ) | 
						
							| 118 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  𝑊  ∈  Word  𝑇 ) | 
						
							| 119 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  𝑟  ∈  𝑇 ) | 
						
							| 120 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  𝑠  ∈  𝑇 ) | 
						
							| 121 | 119 120 | s2cld | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  〈“ 𝑟 𝑠 ”〉  ∈  Word  𝑇 ) | 
						
							| 122 |  | splcl | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  〈“ 𝑟 𝑠 ”〉  ∈  Word  𝑇 )  →  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  ∈  Word  𝑇 ) | 
						
							| 123 | 118 121 122 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  ∈  Word  𝑇 ) | 
						
							| 124 | 123 | adantrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  ∈  Word  𝑇 ) | 
						
							| 125 | 64 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  𝐺  ∈  Mnd ) | 
						
							| 126 | 69 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  𝑊  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 127 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  𝐼  ∈  ( 0 ... ( 𝐼  +  2 ) ) ) | 
						
							| 128 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝐼  +  2 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 129 | 68 121 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  〈“ 𝑟 𝑠 ”〉  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 130 | 129 | adantrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  〈“ 𝑟 𝑠 ”〉  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 131 | 74 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 )  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 132 |  | simprr1 | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 ) ) | 
						
							| 133 | 96 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝐺  Σg  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) )  =  ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 134 | 64 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  𝐺  ∈  Mnd ) | 
						
							| 135 | 66 | a1i | ⊢ ( 𝜑  →  𝑇  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 136 | 135 | sselda | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑇 )  →  𝑟  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 137 | 136 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  𝑟  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 138 | 135 | sselda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  →  𝑠  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 139 | 138 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  𝑠  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 140 | 61 91 | gsumws2 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑟  ∈  ( Base ‘ 𝐺 )  ∧  𝑠  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝐺  Σg  〈“ 𝑟 𝑠 ”〉 )  =  ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 ) ) | 
						
							| 141 | 134 137 139 140 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( 𝐺  Σg  〈“ 𝑟 𝑠 ”〉 )  =  ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 ) ) | 
						
							| 142 | 1 61 91 | symgov | ⊢ ( ( 𝑟  ∈  ( Base ‘ 𝐺 )  ∧  𝑠  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 )  =  ( 𝑟  ∘  𝑠 ) ) | 
						
							| 143 | 137 139 142 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( 𝑟 ( +g ‘ 𝐺 ) 𝑠 )  =  ( 𝑟  ∘  𝑠 ) ) | 
						
							| 144 | 141 143 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( 𝐺  Σg  〈“ 𝑟 𝑠 ”〉 )  =  ( 𝑟  ∘  𝑠 ) ) | 
						
							| 145 | 144 | adantrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝐺  Σg  〈“ 𝑟 𝑠 ”〉 )  =  ( 𝑟  ∘  𝑠 ) ) | 
						
							| 146 | 132 133 145 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝐺  Σg  〈“ 𝑟 𝑠 ”〉 )  =  ( 𝐺  Σg  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) ) ) | 
						
							| 147 | 61 125 126 127 128 130 131 146 | gsumspl | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) 〉 ) ) ) | 
						
							| 148 | 59 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  ( 𝑊  substr  〈 𝐼 ,  ( 𝐼  +  2 ) 〉 ) 〉 ) )  =  ( 𝐺  Σg  𝑊 ) ) | 
						
							| 149 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 150 | 147 148 149 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 151 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  𝐼  ∈  ( 0 ... ( 𝐼  +  2 ) ) ) | 
						
							| 152 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( 𝐼  +  2 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 153 | 118 151 152 121 | spllen | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  +  ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 )  −  ( ( 𝐼  +  2 )  −  𝐼 ) ) ) ) | 
						
							| 154 |  | s2len | ⊢ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 )  =  2 | 
						
							| 155 | 154 | oveq1i | ⊢ ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 )  −  ( ( 𝐼  +  2 )  −  𝐼 ) )  =  ( 2  −  ( ( 𝐼  +  2 )  −  𝐼 ) ) | 
						
							| 156 | 46 | oveq2d | ⊢ ( 𝜑  →  ( 2  −  ( ( 𝐼  +  2 )  −  𝐼 ) )  =  ( 2  −  2 ) ) | 
						
							| 157 | 44 | subidi | ⊢ ( 2  −  2 )  =  0 | 
						
							| 158 | 156 157 | eqtrdi | ⊢ ( 𝜑  →  ( 2  −  ( ( 𝐼  +  2 )  −  𝐼 ) )  =  0 ) | 
						
							| 159 | 155 158 | eqtrid | ⊢ ( 𝜑  →  ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 )  −  ( ( 𝐼  +  2 )  −  𝐼 ) )  =  0 ) | 
						
							| 160 | 159 | oveq2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  +  ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 )  −  ( ( 𝐼  +  2 )  −  𝐼 ) ) )  =  ( ( ♯ ‘ 𝑊 )  +  0 ) ) | 
						
							| 161 | 6 52 | eqeltrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 162 | 161 | addridd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  +  0 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 163 | 160 162 6 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  +  ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 )  −  ( ( 𝐼  +  2 )  −  𝐼 ) ) )  =  𝐿 ) | 
						
							| 164 | 163 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( ( ♯ ‘ 𝑊 )  +  ( ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 )  −  ( ( 𝐼  +  2 )  −  𝐼 ) ) )  =  𝐿 ) | 
						
							| 165 | 153 164 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  𝐿 ) | 
						
							| 166 | 165 | adantrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  𝐿 ) | 
						
							| 167 | 150 166 | jca | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  𝐿 ) ) | 
						
							| 168 | 27 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 169 |  | simprr2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  𝐴  ∈  dom  ( 𝑠  ∖   I  ) ) | 
						
							| 170 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 171 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 172 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 173 |  | elfzo0 | ⊢ ( 1  ∈  ( 0 ..^ 2 )  ↔  ( 1  ∈  ℕ0  ∧  2  ∈  ℕ  ∧  1  <  2 ) ) | 
						
							| 174 | 170 171 172 173 | mpbir3an | ⊢ 1  ∈  ( 0 ..^ 2 ) | 
						
							| 175 | 154 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) )  =  ( 0 ..^ 2 ) | 
						
							| 176 | 174 175 | eleqtrri | ⊢ 1  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) | 
						
							| 177 | 176 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  1  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) ) | 
						
							| 178 | 118 151 152 121 177 | splfv2a | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  =  ( 〈“ 𝑟 𝑠 ”〉 ‘ 1 ) ) | 
						
							| 179 |  | s2fv1 | ⊢ ( 𝑠  ∈  𝑇  →  ( 〈“ 𝑟 𝑠 ”〉 ‘ 1 )  =  𝑠 ) | 
						
							| 180 | 179 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( 〈“ 𝑟 𝑠 ”〉 ‘ 1 )  =  𝑠 ) | 
						
							| 181 | 178 180 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  =  𝑠 ) | 
						
							| 182 | 181 | adantrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  =  𝑠 ) | 
						
							| 183 | 182 | difeq1d | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  ∖   I  )  =  ( 𝑠  ∖   I  ) ) | 
						
							| 184 | 183 | dmeqd | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  ∖   I  )  =  dom  ( 𝑠  ∖   I  ) ) | 
						
							| 185 | 169 184 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  ∖   I  ) ) | 
						
							| 186 |  | fzosplitsni | ⊢ ( 𝐼  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) )  ↔  ( 𝑗  ∈  ( 0 ..^ 𝐼 )  ∨  𝑗  =  𝐼 ) ) ) | 
						
							| 187 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 188 | 186 187 | eleq2s | ⊢ ( 𝐼  ∈  ℕ0  →  ( 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) )  ↔  ( 𝑗  ∈  ( 0 ..^ 𝐼 )  ∨  𝑗  =  𝐼 ) ) ) | 
						
							| 189 | 18 188 | syl | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) )  ↔  ( 𝑗  ∈  ( 0 ..^ 𝐼 )  ∨  𝑗  =  𝐼 ) ) ) | 
						
							| 190 | 189 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) )  ↔  ( 𝑗  ∈  ( 0 ..^ 𝐼 )  ∨  𝑗  =  𝐼 ) ) ) | 
						
							| 191 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑊 ‘ 𝑘 )  =  ( 𝑊 ‘ 𝑗 ) ) | 
						
							| 192 | 191 | difeq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑊 ‘ 𝑘 )  ∖   I  )  =  ( ( 𝑊 ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 193 | 192 | dmeqd | ⊢ ( 𝑘  =  𝑗  →  dom  ( ( 𝑊 ‘ 𝑘 )  ∖   I  )  =  dom  ( ( 𝑊 ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 194 | 193 | eleq2d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴  ∈  dom  ( ( 𝑊 ‘ 𝑘 )  ∖   I  )  ↔  𝐴  ∈  dom  ( ( 𝑊 ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 195 | 194 | notbid | ⊢ ( 𝑘  =  𝑗  →  ( ¬  𝐴  ∈  dom  ( ( 𝑊 ‘ 𝑘 )  ∖   I  )  ↔  ¬  𝐴  ∈  dom  ( ( 𝑊 ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 196 | 195 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 0 ..^ 𝐼 ) ¬  𝐴  ∈  dom  ( ( 𝑊 ‘ 𝑘 )  ∖   I  )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  ¬  𝐴  ∈  dom  ( ( 𝑊 ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 197 | 9 196 | sylan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  ¬  𝐴  ∈  dom  ( ( 𝑊 ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 198 | 197 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  ¬  𝐴  ∈  dom  ( ( 𝑊 ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 199 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  𝑊  ∈  Word  𝑇 ) | 
						
							| 200 | 26 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  𝐼  ∈  ( 0 ... ( 𝐼  +  2 ) ) ) | 
						
							| 201 | 37 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  ( 𝐼  +  2 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 202 | 121 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  〈“ 𝑟 𝑠 ”〉  ∈  Word  𝑇 ) | 
						
							| 203 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  𝑗  ∈  ( 0 ..^ 𝐼 ) ) | 
						
							| 204 | 199 200 201 202 203 | splfv1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  =  ( 𝑊 ‘ 𝑗 ) ) | 
						
							| 205 | 204 | difeq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  )  =  ( ( 𝑊 ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 206 | 205 | dmeqd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  )  =  dom  ( ( 𝑊 ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 207 | 198 206 | neleqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  ∧  𝑗  ∈  ( 0 ..^ 𝐼 ) )  →  ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 208 | 207 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( 𝑗  ∈  ( 0 ..^ 𝐼 )  →  ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 209 | 208 | adantrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝑗  ∈  ( 0 ..^ 𝐼 )  →  ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 210 |  | simprr3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) | 
						
							| 211 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 212 |  | 2pos | ⊢ 0  <  2 | 
						
							| 213 |  | elfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 2 )  ↔  ( 0  ∈  ℕ0  ∧  2  ∈  ℕ  ∧  0  <  2 ) ) | 
						
							| 214 | 211 171 212 213 | mpbir3an | ⊢ 0  ∈  ( 0 ..^ 2 ) | 
						
							| 215 | 214 175 | eleqtrri | ⊢ 0  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) | 
						
							| 216 | 215 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝑟 𝑠 ”〉 ) ) ) | 
						
							| 217 | 118 151 152 121 216 | splfv2a | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  0 ) )  =  ( 〈“ 𝑟 𝑠 ”〉 ‘ 0 ) ) | 
						
							| 218 | 32 | addridd | ⊢ ( 𝜑  →  ( 𝐼  +  0 )  =  𝐼 ) | 
						
							| 219 | 218 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( 𝐼  +  0 )  =  𝐼 ) | 
						
							| 220 | 219 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  0 ) )  =  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ) | 
						
							| 221 |  | s2fv0 | ⊢ ( 𝑟  ∈  𝑇  →  ( 〈“ 𝑟 𝑠 ”〉 ‘ 0 )  =  𝑟 ) | 
						
							| 222 | 221 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( 〈“ 𝑟 𝑠 ”〉 ‘ 0 )  =  𝑟 ) | 
						
							| 223 | 217 220 222 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 )  =  𝑟 ) | 
						
							| 224 | 223 | difeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 )  ∖   I  )  =  ( 𝑟  ∖   I  ) ) | 
						
							| 225 | 224 | dmeqd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 )  ∖   I  )  =  dom  ( 𝑟  ∖   I  ) ) | 
						
							| 226 | 225 | eleq2d | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( 𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 )  ∖   I  )  ↔  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) | 
						
							| 227 | 226 | adantrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 )  ∖   I  )  ↔  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) | 
						
							| 228 | 210 227 | mtbird | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 )  ∖   I  ) ) | 
						
							| 229 |  | fveq2 | ⊢ ( 𝑗  =  𝐼  →  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  =  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 ) ) | 
						
							| 230 | 229 | difeq1d | ⊢ ( 𝑗  =  𝐼  →  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  )  =  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 )  ∖   I  ) ) | 
						
							| 231 | 230 | dmeqd | ⊢ ( 𝑗  =  𝐼  →  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  )  =  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 )  ∖   I  ) ) | 
						
							| 232 | 231 | eleq2d | ⊢ ( 𝑗  =  𝐼  →  ( 𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  )  ↔  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 )  ∖   I  ) ) ) | 
						
							| 233 | 232 | notbid | ⊢ ( 𝑗  =  𝐼  →  ( ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  )  ↔  ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝐼 )  ∖   I  ) ) ) | 
						
							| 234 | 228 233 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝑗  =  𝐼  →  ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 235 | 209 234 | jaod | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( ( 𝑗  ∈  ( 0 ..^ 𝐼 )  ∨  𝑗  =  𝐼 )  →  ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 236 | 190 235 | sylbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) )  →  ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 237 | 236 | ralrimiv | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 238 | 168 185 237 | 3jca | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 239 |  | oveq2 | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( 𝐺  Σg  𝑤 )  =  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ) ) | 
						
							| 240 | 239 | eqeq1d | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ↔  ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 241 |  | fveqeq2 | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( ( ♯ ‘ 𝑤 )  =  𝐿  ↔  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  𝐿 ) ) | 
						
							| 242 | 240 241 | anbi12d | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ↔  ( ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  𝐿 ) ) ) | 
						
							| 243 |  | fveq1 | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( 𝑤 ‘ ( 𝐼  +  1 ) )  =  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 244 | 243 | difeq1d | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  =  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  ∖   I  ) ) | 
						
							| 245 | 244 | dmeqd | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  =  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  ∖   I  ) ) | 
						
							| 246 | 245 | eleq2d | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( 𝐴  ∈  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  ↔  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  ∖   I  ) ) ) | 
						
							| 247 |  | fveq1 | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( 𝑤 ‘ 𝑗 )  =  ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 ) ) | 
						
							| 248 | 247 | difeq1d | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( ( 𝑤 ‘ 𝑗 )  ∖   I  )  =  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 249 | 248 | dmeqd | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  )  =  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) | 
						
							| 250 | 249 | eleq2d | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( 𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  )  ↔  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 251 | 250 | notbid | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  )  ↔  ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 252 | 251 | ralbidv | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  )  ↔  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) | 
						
							| 253 | 246 252 | 3anbi23d | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) )  ↔  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) ) | 
						
							| 254 | 242 253 | anbi12d | ⊢ ( 𝑤  =  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  →  ( ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  ↔  ( ( ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  𝐿 )  ∧  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) ) ) | 
						
							| 255 | 254 | rspcev | ⊢ ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 )  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) )  =  𝐿 )  ∧  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( ( 𝑊  splice  〈 𝐼 ,  ( 𝐼  +  2 ) ,  〈“ 𝑟 𝑠 ”〉 〉 ) ‘ 𝑗 )  ∖   I  ) ) ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) | 
						
							| 256 | 124 167 238 255 | syl12anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 )  ∧  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) | 
						
							| 257 | 256 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑠  ∈  𝑇 ) )  →  ( ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) ) | 
						
							| 258 | 257 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) ) | 
						
							| 259 | 2 3 87 89 8 | psgnunilem1 | ⊢ ( 𝜑  →  ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  (  I   ↾  𝐷 )  ∨  ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( ( 𝑊 ‘ 𝐼 )  ∘  ( 𝑊 ‘ ( 𝐼  +  1 ) ) )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) ) | 
						
							| 260 | 117 258 259 | mpjaod | ⊢ ( 𝜑  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝐼  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝐴  ∈  dom  ( ( 𝑤 ‘ ( 𝐼  +  1 ) )  ∖   I  )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( 𝐼  +  1 ) ) ¬  𝐴  ∈  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) |