| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnunilem3.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
psgnunilem3.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
| 3 |
|
psgnunilem3.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 4 |
|
psgnunilem3.w1 |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) |
| 5 |
|
psgnunilem3.l |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 ) |
| 6 |
|
psgnunilem3.w2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 7 |
|
psgnunilem3.w3 |
⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) |
| 8 |
|
psgnunilem3.in |
⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
| 9 |
5 6
|
eqeltrrd |
⊢ ( 𝜑 → 𝐿 ∈ ℕ ) |
| 10 |
9
|
nnnn0d |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
| 11 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
| 12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
| 13 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 15 |
9
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐿 ) |
| 16 |
|
elfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝐿 ) ↔ ( 0 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ∧ 0 < 𝐿 ) ) |
| 17 |
14 9 15 16
|
syl3anbrc |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝐿 ) ) |
| 18 |
5
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝐿 ) ) |
| 19 |
17 18
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 20 |
12 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑊 ‘ 0 ) ∈ 𝑇 ) |
| 21 |
|
eqid |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) |
| 22 |
21 2
|
pmtrfmvdn0 |
⊢ ( ( 𝑊 ‘ 0 ) ∈ 𝑇 → dom ( ( 𝑊 ‘ 0 ) ∖ I ) ≠ ∅ ) |
| 23 |
20 22
|
syl |
⊢ ( 𝜑 → dom ( ( 𝑊 ‘ 0 ) ∖ I ) ≠ ∅ ) |
| 24 |
|
n0 |
⊢ ( dom ( ( 𝑊 ‘ 0 ) ∖ I ) ≠ ∅ ↔ ∃ 𝑒 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) |
| 25 |
23 24
|
sylib |
⊢ ( 𝜑 → ∃ 𝑒 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) |
| 26 |
|
fzonel |
⊢ ¬ 𝐿 ∈ ( 0 ..^ 𝐿 ) |
| 27 |
|
simpr1 |
⊢ ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) → 𝐿 ∈ ( 0 ..^ 𝐿 ) ) |
| 28 |
26 27
|
mto |
⊢ ¬ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 29 |
28
|
a1i |
⊢ ( 𝑤 ∈ Word 𝑇 → ¬ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 30 |
29
|
nrex |
⊢ ¬ ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 31 |
|
eleq1 |
⊢ ( 𝑎 = 0 → ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ↔ 0 ∈ ( 0 ..^ 𝐿 ) ) ) |
| 32 |
|
fveq2 |
⊢ ( 𝑎 = 0 → ( 𝑤 ‘ 𝑎 ) = ( 𝑤 ‘ 0 ) ) |
| 33 |
32
|
difeq1d |
⊢ ( 𝑎 = 0 → ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = ( ( 𝑤 ‘ 0 ) ∖ I ) ) |
| 34 |
33
|
dmeqd |
⊢ ( 𝑎 = 0 → dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = dom ( ( 𝑤 ‘ 0 ) ∖ I ) ) |
| 35 |
34
|
eleq2d |
⊢ ( 𝑎 = 0 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ) ) |
| 36 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 0 ..^ 𝑎 ) = ( 0 ..^ 0 ) ) |
| 37 |
36
|
raleqdv |
⊢ ( 𝑎 = 0 → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 38 |
31 35 37
|
3anbi123d |
⊢ ( 𝑎 = 0 → ( ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 39 |
38
|
anbi2d |
⊢ ( 𝑎 = 0 → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 40 |
39
|
rexbidv |
⊢ ( 𝑎 = 0 → ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 41 |
40
|
imbi2d |
⊢ ( 𝑎 = 0 → ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) ) |
| 42 |
|
eleq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ↔ 𝑏 ∈ ( 0 ..^ 𝐿 ) ) ) |
| 43 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑤 ‘ 𝑎 ) = ( 𝑤 ‘ 𝑏 ) ) |
| 44 |
43
|
difeq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ) |
| 45 |
44
|
dmeqd |
⊢ ( 𝑎 = 𝑏 → dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ) |
| 46 |
45
|
eleq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ) ) |
| 47 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 0 ..^ 𝑎 ) = ( 0 ..^ 𝑏 ) ) |
| 48 |
47
|
raleqdv |
⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 49 |
42 46 48
|
3anbi123d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 50 |
49
|
anbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 51 |
50
|
rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 52 |
|
oveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑥 ) ) |
| 53 |
52
|
eqeq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ) |
| 54 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑥 → ( ( ♯ ‘ 𝑤 ) = 𝐿 ↔ ( ♯ ‘ 𝑥 ) = 𝐿 ) ) |
| 55 |
53 54
|
anbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ↔ ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ) ) |
| 56 |
|
fveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 𝑏 ) = ( 𝑥 ‘ 𝑏 ) ) |
| 57 |
56
|
difeq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ‘ 𝑏 ) ∖ I ) = ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ) |
| 58 |
57
|
dmeqd |
⊢ ( 𝑤 = 𝑥 → dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) = dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ) |
| 59 |
58
|
eleq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ) ) |
| 60 |
|
fveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 𝑐 ) = ( 𝑥 ‘ 𝑐 ) ) |
| 61 |
60
|
difeq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ‘ 𝑐 ) ∖ I ) = ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ) |
| 62 |
61
|
dmeqd |
⊢ ( 𝑤 = 𝑥 → dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) = dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ) |
| 63 |
62
|
eleq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ) ) |
| 64 |
63
|
notbid |
⊢ ( 𝑤 = 𝑥 → ( ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ) ) |
| 65 |
64
|
ralbidv |
⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑐 = 𝑑 → ( 𝑥 ‘ 𝑐 ) = ( 𝑥 ‘ 𝑑 ) ) |
| 67 |
66
|
difeq1d |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑥 ‘ 𝑐 ) ∖ I ) = ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) |
| 68 |
67
|
dmeqd |
⊢ ( 𝑐 = 𝑑 → dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) = dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) |
| 69 |
68
|
eleq2d |
⊢ ( 𝑐 = 𝑑 → ( 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) |
| 70 |
69
|
notbid |
⊢ ( 𝑐 = 𝑑 → ( ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ↔ ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) |
| 71 |
70
|
cbvralvw |
⊢ ( ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) |
| 72 |
65 71
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) |
| 73 |
59 72
|
3anbi23d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) |
| 74 |
55 73
|
anbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) |
| 75 |
74
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) |
| 76 |
51 75
|
bitrdi |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) |
| 77 |
76
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) ) |
| 78 |
|
eleq1 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ↔ ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝑤 ‘ 𝑎 ) = ( 𝑤 ‘ ( 𝑏 + 1 ) ) ) |
| 80 |
79
|
difeq1d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ) |
| 81 |
80
|
dmeqd |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ) |
| 82 |
81
|
eleq2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ) ) |
| 83 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 0 ..^ 𝑎 ) = ( 0 ..^ ( 𝑏 + 1 ) ) ) |
| 84 |
83
|
raleqdv |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 85 |
78 82 84
|
3anbi123d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 86 |
85
|
anbi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 87 |
86
|
rexbidv |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 88 |
87
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) ) |
| 89 |
|
eleq1 |
⊢ ( 𝑎 = 𝐿 → ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ↔ 𝐿 ∈ ( 0 ..^ 𝐿 ) ) ) |
| 90 |
|
fveq2 |
⊢ ( 𝑎 = 𝐿 → ( 𝑤 ‘ 𝑎 ) = ( 𝑤 ‘ 𝐿 ) ) |
| 91 |
90
|
difeq1d |
⊢ ( 𝑎 = 𝐿 → ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ) |
| 92 |
91
|
dmeqd |
⊢ ( 𝑎 = 𝐿 → dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) = dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ) |
| 93 |
92
|
eleq2d |
⊢ ( 𝑎 = 𝐿 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ) ) |
| 94 |
|
oveq2 |
⊢ ( 𝑎 = 𝐿 → ( 0 ..^ 𝑎 ) = ( 0 ..^ 𝐿 ) ) |
| 95 |
94
|
raleqdv |
⊢ ( 𝑎 = 𝐿 → ( ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) |
| 96 |
89 93 95
|
3anbi123d |
⊢ ( 𝑎 = 𝐿 → ( ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 97 |
96
|
anbi2d |
⊢ ( 𝑎 = 𝐿 → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 98 |
97
|
rexbidv |
⊢ ( 𝑎 = 𝐿 → ( ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 99 |
98
|
imbi2d |
⊢ ( 𝑎 = 𝐿 → ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝑎 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑎 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝑎 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) ) |
| 100 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → 𝑊 ∈ Word 𝑇 ) |
| 101 |
7 5
|
jca |
⊢ ( 𝜑 → ( ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑊 ) = 𝐿 ) ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ( ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑊 ) = 𝐿 ) ) |
| 103 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → 0 ∈ ( 0 ..^ 𝐿 ) ) |
| 104 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) |
| 105 |
|
ral0 |
⊢ ∀ 𝑐 ∈ ∅ ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) |
| 106 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
| 107 |
106
|
raleqi |
⊢ ( ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ∅ ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) |
| 108 |
105 107
|
mpbir |
⊢ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) |
| 109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) |
| 110 |
103 104 109
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) |
| 111 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑊 ) ) |
| 112 |
111
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) ) |
| 113 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) = 𝐿 ↔ ( ♯ ‘ 𝑊 ) = 𝐿 ) ) |
| 114 |
112 113
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ↔ ( ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑊 ) = 𝐿 ) ) ) |
| 115 |
|
fveq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
| 116 |
115
|
difeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 0 ) ∖ I ) = ( ( 𝑊 ‘ 0 ) ∖ I ) ) |
| 117 |
116
|
dmeqd |
⊢ ( 𝑤 = 𝑊 → dom ( ( 𝑤 ‘ 0 ) ∖ I ) = dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) |
| 118 |
117
|
eleq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ) |
| 119 |
|
fveq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑐 ) = ( 𝑊 ‘ 𝑐 ) ) |
| 120 |
119
|
difeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 𝑐 ) ∖ I ) = ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) |
| 121 |
120
|
dmeqd |
⊢ ( 𝑤 = 𝑊 → dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) |
| 122 |
121
|
eleq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) |
| 123 |
122
|
notbid |
⊢ ( 𝑤 = 𝑊 → ( ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) |
| 124 |
123
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ↔ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) |
| 125 |
118 124
|
3anbi23d |
⊢ ( 𝑤 = 𝑊 → ( ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ↔ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 126 |
114 125
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑊 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 127 |
126
|
rspcev |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑊 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑊 ‘ 𝑐 ) ∖ I ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 128 |
100 102 110 127
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 0 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 0 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 0 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 129 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → 𝐷 ∈ 𝑉 ) |
| 130 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → 𝑥 ∈ Word 𝑇 ) |
| 131 |
|
simpll |
⊢ ( ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) |
| 132 |
131
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) |
| 133 |
|
simplr |
⊢ ( ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → ( ♯ ‘ 𝑥 ) = 𝐿 ) |
| 134 |
133
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → ( ♯ ‘ 𝑥 ) = 𝐿 ) |
| 135 |
|
simpr1 |
⊢ ( ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → 𝑏 ∈ ( 0 ..^ 𝐿 ) ) |
| 136 |
135
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → 𝑏 ∈ ( 0 ..^ 𝐿 ) ) |
| 137 |
|
simpr2 |
⊢ ( ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ) |
| 138 |
137
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ) |
| 139 |
|
simpr3 |
⊢ ( ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) |
| 140 |
139
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) |
| 141 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ↔ ( ♯ ‘ 𝑦 ) = ( 𝐿 − 2 ) ) ) |
| 142 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg 𝑦 ) ) |
| 143 |
142
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 144 |
141 143
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ( ( ♯ ‘ 𝑦 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) ) |
| 145 |
144
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ∃ 𝑦 ∈ Word 𝑇 ( ( ♯ ‘ 𝑦 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 146 |
8 145
|
sylnib |
⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ Word 𝑇 ( ( ♯ ‘ 𝑦 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 147 |
146
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → ¬ ∃ 𝑦 ∈ Word 𝑇 ( ( ♯ ‘ 𝑦 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑦 ) = ( I ↾ 𝐷 ) ) ) |
| 148 |
1 2 129 130 132 134 136 138 140 147
|
psgnunilem2 |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ∧ ( 𝑥 ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) |
| 149 |
148
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ( ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 150 |
149
|
a2i |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) → ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 151 |
150
|
a1i |
⊢ ( 𝑏 ∈ ℕ0 → ( ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐿 ) ∧ ( 𝑏 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑏 ) ∖ I ) ∧ ∀ 𝑑 ∈ ( 0 ..^ 𝑏 ) ¬ 𝑒 ∈ dom ( ( 𝑥 ‘ 𝑑 ) ∖ I ) ) ) ) → ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ ( 𝑏 + 1 ) ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ ( 𝑏 + 1 ) ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) ) |
| 152 |
41 77 88 99 128 151
|
nn0ind |
⊢ ( 𝐿 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( 𝐿 ∈ ( 0 ..^ 𝐿 ) ∧ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝐿 ) ∖ I ) ∧ ∀ 𝑐 ∈ ( 0 ..^ 𝐿 ) ¬ 𝑒 ∈ dom ( ( 𝑤 ‘ 𝑐 ) ∖ I ) ) ) ) ) |
| 153 |
30 152
|
mtoi |
⊢ ( 𝐿 ∈ ℕ0 → ¬ ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) ) |
| 154 |
153
|
con2i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ dom ( ( 𝑊 ‘ 0 ) ∖ I ) ) → ¬ 𝐿 ∈ ℕ0 ) |
| 155 |
25 154
|
exlimddv |
⊢ ( 𝜑 → ¬ 𝐿 ∈ ℕ0 ) |
| 156 |
10 155
|
pm2.65i |
⊢ ¬ 𝜑 |