| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnunilem4.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | psgnunilem4.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 3 |  | psgnunilem4.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | psgnunilem4.w1 | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝑇 ) | 
						
							| 5 |  | psgnunilem4.w2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 6 |  | wrdfin | ⊢ ( 𝑊  ∈  Word  𝑇  →  𝑊  ∈  Fin ) | 
						
							| 7 |  | hashcl | ⊢ ( 𝑊  ∈  Fin  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 8 | 4 6 7 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 9 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 10 | 8 9 | eleqtrdi | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑤  =  ∅  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 12 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( ♯ ‘ 𝑤 )  =  0 ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑤  =  ∅  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  ( - 1 ↑ 0 ) ) | 
						
							| 15 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 16 |  | exp0 | ⊢ ( - 1  ∈  ℂ  →  ( - 1 ↑ 0 )  =  1 ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( - 1 ↑ 0 )  =  1 | 
						
							| 18 | 14 17 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) | 
						
							| 19 | 18 | 2a1d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝜑  ∧  ∀ 𝑥 ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) ) )  →  ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) ) | 
						
							| 20 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  𝜑 ) | 
						
							| 21 | 20 3 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 22 |  | simpl3l | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  𝑤  ∈  Word  𝑇 ) | 
						
							| 23 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑤 ) ) | 
						
							| 24 |  | wrdfin | ⊢ ( 𝑤  ∈  Word  𝑇  →  𝑤  ∈  Fin ) | 
						
							| 25 | 22 24 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  𝑤  ∈  Fin ) | 
						
							| 26 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  𝑤  ≠  ∅ ) | 
						
							| 27 |  | hashnncl | ⊢ ( 𝑤  ∈  Fin  →  ( ( ♯ ‘ 𝑤 )  ∈  ℕ  ↔  𝑤  ≠  ∅ ) ) | 
						
							| 28 | 27 | biimpar | ⊢ ( ( 𝑤  ∈  Fin  ∧  𝑤  ≠  ∅ )  →  ( ♯ ‘ 𝑤 )  ∈  ℕ ) | 
						
							| 29 | 25 26 28 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  ( ♯ ‘ 𝑤 )  ∈  ℕ ) | 
						
							| 30 |  | simpl3r | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 31 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ↔  ( ♯ ‘ 𝑦 )  =  ( ( ♯ ‘ 𝑤 )  −  2 ) ) ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐺  Σg  𝑥 )  =  ( 𝐺  Σg  𝑦 ) ) | 
						
							| 33 | 32 | eqeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ↔  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 34 | 31 33 | anbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  ↔  ( ( ♯ ‘ 𝑦 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) ) | 
						
							| 35 | 34 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  ↔  ∃ 𝑦  ∈  Word  𝑇 ( ( ♯ ‘ 𝑦 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 36 | 35 | notbii | ⊢ ( ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  ↔  ¬  ∃ 𝑦  ∈  Word  𝑇 ( ( ♯ ‘ 𝑦 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 37 | 36 | biimpi | ⊢ ( ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ¬  ∃ 𝑦  ∈  Word  𝑇 ( ( ♯ ‘ 𝑦 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  ¬  ∃ 𝑦  ∈  Word  𝑇 ( ( ♯ ‘ 𝑦 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 39 | 1 2 21 22 23 29 30 38 | psgnunilem3 | ⊢ ¬  ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 40 |  | iman | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  ↔  ¬  ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) ) | 
						
							| 41 | 39 40 | mpbir | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 42 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) ) | 
						
							| 43 | 41 42 | sylib | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  ∃ 𝑥 ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) ) | 
						
							| 44 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  𝑥  ∈  Word  𝑇 ) | 
						
							| 45 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 46 | 44 45 | jca | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 47 |  | wrdfin | ⊢ ( 𝑥  ∈  Word  𝑇  →  𝑥  ∈  Fin ) | 
						
							| 48 |  | hashcl | ⊢ ( 𝑥  ∈  Fin  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 49 | 44 47 48 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 50 |  | simp3l | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  𝑤  ∈  Word  𝑇 ) | 
						
							| 51 | 50 24 | syl | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  𝑤  ∈  Fin ) | 
						
							| 52 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  𝑤  ≠  ∅ ) | 
						
							| 53 | 51 52 28 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  ( ♯ ‘ 𝑤 )  ∈  ℕ ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ♯ ‘ 𝑤 )  ∈  ℕ ) | 
						
							| 55 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 ) ) | 
						
							| 56 | 54 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ♯ ‘ 𝑤 )  ∈  ℝ ) | 
						
							| 57 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 58 |  | ltsubrp | ⊢ ( ( ( ♯ ‘ 𝑤 )  ∈  ℝ  ∧  2  ∈  ℝ+ )  →  ( ( ♯ ‘ 𝑤 )  −  2 )  <  ( ♯ ‘ 𝑤 ) ) | 
						
							| 59 | 56 57 58 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ( ♯ ‘ 𝑤 )  −  2 )  <  ( ♯ ‘ 𝑤 ) ) | 
						
							| 60 | 55 59 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ♯ ‘ 𝑥 )  <  ( ♯ ‘ 𝑤 ) ) | 
						
							| 61 |  | elfzo0 | ⊢ ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↔  ( ( ♯ ‘ 𝑥 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑤 )  ∈  ℕ  ∧  ( ♯ ‘ 𝑥 )  <  ( ♯ ‘ 𝑤 ) ) ) | 
						
							| 62 | 49 54 60 61 | syl3anbrc | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ) | 
						
							| 63 |  | id | ⊢ ( ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) ) ) | 
						
							| 64 | 63 | com13 | ⊢ ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) ) ) | 
						
							| 65 | 46 62 64 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) ) | 
						
							| 66 | 55 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  ( - 1 ↑ ( ( ♯ ‘ 𝑤 )  −  2 ) ) ) | 
						
							| 67 | 15 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  - 1  ∈  ℂ ) | 
						
							| 68 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 69 | 68 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  - 1  ≠  0 ) | 
						
							| 70 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 71 | 70 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  2  ∈  ℤ ) | 
						
							| 72 | 54 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ♯ ‘ 𝑤 )  ∈  ℤ ) | 
						
							| 73 | 67 69 71 72 | expsubd | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( - 1 ↑ ( ( ♯ ‘ 𝑤 )  −  2 ) )  =  ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  /  ( - 1 ↑ 2 ) ) ) | 
						
							| 74 |  | neg1sqe1 | ⊢ ( - 1 ↑ 2 )  =  1 | 
						
							| 75 | 74 | oveq2i | ⊢ ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  /  ( - 1 ↑ 2 ) )  =  ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  /  1 ) | 
						
							| 76 |  | m1expcl | ⊢ ( ( ♯ ‘ 𝑤 )  ∈  ℤ  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  ∈  ℤ ) | 
						
							| 77 | 76 | zcnd | ⊢ ( ( ♯ ‘ 𝑤 )  ∈  ℤ  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  ∈  ℂ ) | 
						
							| 78 | 72 77 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  ∈  ℂ ) | 
						
							| 79 | 78 | div1d | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  /  1 )  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) | 
						
							| 80 | 75 79 | eqtrid | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  /  ( - 1 ↑ 2 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) | 
						
							| 81 | 66 73 80 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) | 
						
							| 82 | 81 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1  ↔  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) | 
						
							| 83 | 65 82 | sylibd | ⊢ ( ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) )  →  ( ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) | 
						
							| 84 | 83 | ex | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  ( ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) ) | 
						
							| 85 | 84 | com23 | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  ( ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) ) | 
						
							| 86 | 85 | alimdv | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ∀ 𝑥 ( ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) ) | 
						
							| 87 |  | 19.23v | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 )  ↔  ( ∃ 𝑥 ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) | 
						
							| 88 | 86 87 | imbitrdi | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( ∃ 𝑥 ( 𝑥  ∈  Word  𝑇  ∧  ( ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑤 )  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) ) | 
						
							| 89 | 43 88 | mpid | ⊢ ( ( 𝜑  ∧  𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) ) )  →  ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) | 
						
							| 90 | 89 | 3exp | ⊢ ( 𝜑  →  ( 𝑤  ≠  ∅  →  ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  →  ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) ) ) | 
						
							| 91 | 90 | com34 | ⊢ ( 𝜑  →  ( 𝑤  ≠  ∅  →  ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) ) ) | 
						
							| 92 | 91 | com12 | ⊢ ( 𝑤  ≠  ∅  →  ( 𝜑  →  ( ∀ 𝑥 ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) )  →  ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) ) ) | 
						
							| 93 | 92 | impd | ⊢ ( 𝑤  ≠  ∅  →  ( ( 𝜑  ∧  ∀ 𝑥 ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) ) )  →  ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) ) | 
						
							| 94 | 19 93 | pm2.61ine | ⊢ ( ( 𝜑  ∧  ∀ 𝑥 ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) ) )  →  ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) | 
						
							| 95 | 94 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑤 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ∀ 𝑥 ( ( ♯ ‘ 𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  →  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) ) )  →  ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 ) ) | 
						
							| 96 |  | eleq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ∈  Word  𝑇  ↔  𝑥  ∈  Word  𝑇 ) ) | 
						
							| 97 |  | oveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐺  Σg  𝑤 )  =  ( 𝐺  Σg  𝑥 ) ) | 
						
							| 98 | 97 | eqeq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ↔  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 99 | 96 98 | anbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  ↔  ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) ) | 
						
							| 100 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 101 | 100 | oveq2d | ⊢ ( 𝑤  =  𝑥  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 102 | 101 | eqeq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1  ↔  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) ) | 
						
							| 103 | 99 102 | imbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 )  ↔  ( ( 𝑥  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑥 ) )  =  1 ) ) ) | 
						
							| 104 |  | eleq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤  ∈  Word  𝑇  ↔  𝑊  ∈  Word  𝑇 ) ) | 
						
							| 105 |  | oveq2 | ⊢ ( 𝑤  =  𝑊  →  ( 𝐺  Σg  𝑤 )  =  ( 𝐺  Σg  𝑊 ) ) | 
						
							| 106 | 105 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ↔  ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 107 | 104 106 | anbi12d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  ↔  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 ) ) ) ) | 
						
							| 108 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 109 | 108 | oveq2d | ⊢ ( 𝑤  =  𝑊  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 110 | 109 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1  ↔  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  1 ) ) | 
						
							| 111 | 107 110 | imbi12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑤  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑤 ) )  =  1 )  ↔  ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  1 ) ) ) | 
						
							| 112 | 4 10 95 103 111 100 108 | uzindi | ⊢ ( 𝜑  →  ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  1 ) ) | 
						
							| 113 | 4 5 112 | mp2and | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  1 ) |