Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfvalfi.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
2 |
|
psgnfvalfi.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
psgnfvalfi.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
4 |
|
psgnfvalfi.n |
⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) |
5 |
|
simpr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵 ) → 𝑃 ∈ 𝐵 ) |
6 |
1 2
|
sygbasnfpfi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵 ) → dom ( 𝑃 ∖ I ) ∈ Fin ) |
7 |
1 4 2
|
psgneldm |
⊢ ( 𝑃 ∈ dom 𝑁 ↔ ( 𝑃 ∈ 𝐵 ∧ dom ( 𝑃 ∖ I ) ∈ Fin ) ) |
8 |
5 6 7
|
sylanbrc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵 ) → 𝑃 ∈ dom 𝑁 ) |
9 |
1 3 4
|
psgnval |
⊢ ( 𝑃 ∈ dom 𝑁 → ( 𝑁 ‘ 𝑃 ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑃 ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑃 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |