Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V ) |
2 |
|
ispsmet |
⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) |
4 |
3
|
ibi |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
5 |
4
|
simprd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
6 |
5
|
r19.21bi |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
7 |
6
|
simpld |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑎 𝐷 𝑎 ) = 0 ) |
8 |
7
|
ralrimiva |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑎 ∈ 𝑋 ( 𝑎 𝐷 𝑎 ) = 0 ) |
9 |
|
id |
⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) |
10 |
9 9
|
oveq12d |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 𝐷 𝑎 ) = ( 𝐴 𝐷 𝐴 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 𝐷 𝑎 ) = 0 ↔ ( 𝐴 𝐷 𝐴 ) = 0 ) ) |
12 |
11
|
rspcv |
⊢ ( 𝐴 ∈ 𝑋 → ( ∀ 𝑎 ∈ 𝑋 ( 𝑎 𝐷 𝑎 ) = 0 → ( 𝐴 𝐷 𝐴 ) = 0 ) ) |
13 |
8 12
|
mpan9 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = 0 ) |