| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvex | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝑋  ∈  V ) | 
						
							| 2 |  | ispsmet | ⊢ ( 𝑋  ∈  V  →  ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ↔  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ↔  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) | 
						
							| 4 | 3 | ibi | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 6 | 5 | r19.21bi | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑎  ∈  𝑋 )  →  ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑎  ∈  𝑋 )  →  ( 𝑎 𝐷 𝑎 )  =  0 ) | 
						
							| 8 | 7 | ralrimiva | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ∀ 𝑎  ∈  𝑋 ( 𝑎 𝐷 𝑎 )  =  0 ) | 
						
							| 9 |  | id | ⊢ ( 𝑎  =  𝐴  →  𝑎  =  𝐴 ) | 
						
							| 10 | 9 9 | oveq12d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎 𝐷 𝑎 )  =  ( 𝐴 𝐷 𝐴 ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑎 𝐷 𝑎 )  =  0  ↔  ( 𝐴 𝐷 𝐴 )  =  0 ) ) | 
						
							| 12 | 11 | rspcv | ⊢ ( 𝐴  ∈  𝑋  →  ( ∀ 𝑎  ∈  𝑋 ( 𝑎 𝐷 𝑎 )  =  0  →  ( 𝐴 𝐷 𝐴 )  =  0 ) ) | 
						
							| 13 | 8 12 | mpan9 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐴 )  =  0 ) |