Metamath Proof Explorer


Theorem psmetcl

Description: Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion psmetcl ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 psmetf ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* )
2 fovrn ( ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ*𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* )
3 1 2 syl3an1 ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* )