Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V ) |
2 |
|
ispsmet |
⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
3 |
2
|
biimpa |
⊢ ( ( 𝑋 ∈ V ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
4 |
1 3
|
mpancom |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
5 |
4
|
simpld |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
6 |
|
fdm |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
7 |
6
|
dmeqd |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → dom dom 𝐷 = dom ( 𝑋 × 𝑋 ) ) |
8 |
5 7
|
syl |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → dom dom 𝐷 = dom ( 𝑋 × 𝑋 ) ) |
9 |
|
dmxpid |
⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 |
10 |
8 9
|
eqtr2di |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) |