| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvex | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝑋  ∈  V ) | 
						
							| 2 |  | ispsmet | ⊢ ( 𝑋  ∈  V  →  ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ↔  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ↔  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) | 
						
							| 4 | 3 | ibi | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) | 
						
							| 5 | 4 | simpld | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) |