Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
2 |
|
simp2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
3 |
|
simp3 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
4 |
|
psmettri2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐵 ) ) ) |
5 |
1 2 3 3 4
|
syl13anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐵 ) ) ) |
6 |
|
2re |
⊢ 2 ∈ ℝ |
7 |
|
rexr |
⊢ ( 2 ∈ ℝ → 2 ∈ ℝ* ) |
8 |
|
xmul01 |
⊢ ( 2 ∈ ℝ* → ( 2 ·e 0 ) = 0 ) |
9 |
6 7 8
|
mp2b |
⊢ ( 2 ·e 0 ) = 0 |
10 |
|
psmet0 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 0 ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 0 ) |
12 |
9 11
|
eqtr4id |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 2 ·e 0 ) = ( 𝐵 𝐷 𝐵 ) ) |
13 |
|
psmetcl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
14 |
|
x2times |
⊢ ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* → ( 2 ·e ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐵 ) ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 2 ·e ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐵 ) ) ) |
16 |
5 12 15
|
3brtr4d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 2 ·e 0 ) ≤ ( 2 ·e ( 𝐴 𝐷 𝐵 ) ) ) |
17 |
|
0xr |
⊢ 0 ∈ ℝ* |
18 |
|
2rp |
⊢ 2 ∈ ℝ+ |
19 |
18
|
a1i |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 2 ∈ ℝ+ ) |
20 |
|
xlemul2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ 2 ∈ ℝ+ ) → ( 0 ≤ ( 𝐴 𝐷 𝐵 ) ↔ ( 2 ·e 0 ) ≤ ( 2 ·e ( 𝐴 𝐷 𝐵 ) ) ) ) |
21 |
17 13 19 20
|
mp3an2i |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 0 ≤ ( 𝐴 𝐷 𝐵 ) ↔ ( 2 ·e 0 ) ≤ ( 2 ·e ( 𝐴 𝐷 𝐵 ) ) ) ) |
22 |
16 21
|
mpbird |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) |