| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐷  ∈  ( PsMet ‘ 𝑋 ) ) | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐵  ∈  𝑋 ) | 
						
							| 4 |  | psmettri2 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐵 𝐷 𝐵 )  ≤  ( ( 𝐴 𝐷 𝐵 )  +𝑒  ( 𝐴 𝐷 𝐵 ) ) ) | 
						
							| 5 | 1 2 3 3 4 | syl13anc | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐵 )  ≤  ( ( 𝐴 𝐷 𝐵 )  +𝑒  ( 𝐴 𝐷 𝐵 ) ) ) | 
						
							| 6 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 7 |  | rexr | ⊢ ( 2  ∈  ℝ  →  2  ∈  ℝ* ) | 
						
							| 8 |  | xmul01 | ⊢ ( 2  ∈  ℝ*  →  ( 2  ·e  0 )  =  0 ) | 
						
							| 9 | 6 7 8 | mp2b | ⊢ ( 2  ·e  0 )  =  0 | 
						
							| 10 |  | psmet0 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐵 )  =  0 ) | 
						
							| 11 | 10 | 3adant2 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐵 )  =  0 ) | 
						
							| 12 | 9 11 | eqtr4id | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 2  ·e  0 )  =  ( 𝐵 𝐷 𝐵 ) ) | 
						
							| 13 |  | psmetcl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 14 |  | x2times | ⊢ ( ( 𝐴 𝐷 𝐵 )  ∈  ℝ*  →  ( 2  ·e  ( 𝐴 𝐷 𝐵 ) )  =  ( ( 𝐴 𝐷 𝐵 )  +𝑒  ( 𝐴 𝐷 𝐵 ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 2  ·e  ( 𝐴 𝐷 𝐵 ) )  =  ( ( 𝐴 𝐷 𝐵 )  +𝑒  ( 𝐴 𝐷 𝐵 ) ) ) | 
						
							| 16 | 5 12 15 | 3brtr4d | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 2  ·e  0 )  ≤  ( 2  ·e  ( 𝐴 𝐷 𝐵 ) ) ) | 
						
							| 17 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 18 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  2  ∈  ℝ+ ) | 
						
							| 20 |  | xlemul2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( 𝐴 𝐷 𝐵 )  ∈  ℝ*  ∧  2  ∈  ℝ+ )  →  ( 0  ≤  ( 𝐴 𝐷 𝐵 )  ↔  ( 2  ·e  0 )  ≤  ( 2  ·e  ( 𝐴 𝐷 𝐵 ) ) ) ) | 
						
							| 21 | 17 13 19 20 | mp3an2i | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 0  ≤  ( 𝐴 𝐷 𝐵 )  ↔  ( 2  ·e  0 )  ≤  ( 2  ·e  ( 𝐴 𝐷 𝐵 ) ) ) ) | 
						
							| 22 | 16 21 | mpbird | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  0  ≤  ( 𝐴 𝐷 𝐵 ) ) |