| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psmetcl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 2 | 1 | 3expb | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 3 | 2 | 3adant3 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐶  ∈  ℝ  ∧  ( 𝐴 𝐷 𝐵 )  ≤  𝐶 ) )  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 4 |  | simp3l | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐶  ∈  ℝ  ∧  ( 𝐴 𝐷 𝐵 )  ≤  𝐶 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 5 |  | psmetge0 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  0  ≤  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 6 | 5 | 3expb | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  0  ≤  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐶  ∈  ℝ  ∧  ( 𝐴 𝐷 𝐵 )  ≤  𝐶 ) )  →  0  ≤  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 8 |  | simp3r | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐶  ∈  ℝ  ∧  ( 𝐴 𝐷 𝐵 )  ≤  𝐶 ) )  →  ( 𝐴 𝐷 𝐵 )  ≤  𝐶 ) | 
						
							| 9 |  | xrrege0 | ⊢ ( ( ( ( 𝐴 𝐷 𝐵 )  ∈  ℝ*  ∧  𝐶  ∈  ℝ )  ∧  ( 0  ≤  ( 𝐴 𝐷 𝐵 )  ∧  ( 𝐴 𝐷 𝐵 )  ≤  𝐶 ) )  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ ) | 
						
							| 10 | 3 4 7 8 9 | syl22anc | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐶  ∈  ℝ  ∧  ( 𝐴 𝐷 𝐵 )  ≤  𝐶 ) )  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ ) |