| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvex | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝑋  ∈  V ) | 
						
							| 2 |  | ispsmet | ⊢ ( 𝑋  ∈  V  →  ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ↔  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ↔  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) | 
						
							| 4 | 3 | ibi | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ∀ 𝑎  ∈  𝑋 ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 6 | 5 | r19.21bi | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑎  ∈  𝑋 )  →  ( ( 𝑎 𝐷 𝑎 )  =  0  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 7 | 6 | simprd | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑎  ∈  𝑋 )  →  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) | 
						
							| 8 | 7 | ralrimiva | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ∀ 𝑎  ∈  𝑋 ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎 𝐷 𝑏 )  =  ( 𝐴 𝐷 𝑏 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑐 𝐷 𝑎 )  =  ( 𝑐 𝐷 𝐴 ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  =  ( ( 𝑐 𝐷 𝐴 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) | 
						
							| 12 | 9 11 | breq12d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  ↔  ( 𝐴 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝐴 )  +𝑒  ( 𝑐 𝐷 𝑏 ) ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝐴 𝐷 𝑏 )  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑐 𝐷 𝑏 )  =  ( 𝑐 𝐷 𝐵 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝑐 𝐷 𝐴 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  =  ( ( 𝑐 𝐷 𝐴 )  +𝑒  ( 𝑐 𝐷 𝐵 ) ) ) | 
						
							| 16 | 13 15 | breq12d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝐴 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝐴 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  ↔  ( 𝐴 𝐷 𝐵 )  ≤  ( ( 𝑐 𝐷 𝐴 )  +𝑒  ( 𝑐 𝐷 𝐵 ) ) ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑐  =  𝐶  →  ( 𝑐 𝐷 𝐴 )  =  ( 𝐶 𝐷 𝐴 ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑐  =  𝐶  →  ( 𝑐 𝐷 𝐵 )  =  ( 𝐶 𝐷 𝐵 ) ) | 
						
							| 19 | 17 18 | oveq12d | ⊢ ( 𝑐  =  𝐶  →  ( ( 𝑐 𝐷 𝐴 )  +𝑒  ( 𝑐 𝐷 𝐵 ) )  =  ( ( 𝐶 𝐷 𝐴 )  +𝑒  ( 𝐶 𝐷 𝐵 ) ) ) | 
						
							| 20 | 19 | breq2d | ⊢ ( 𝑐  =  𝐶  →  ( ( 𝐴 𝐷 𝐵 )  ≤  ( ( 𝑐 𝐷 𝐴 )  +𝑒  ( 𝑐 𝐷 𝐵 ) )  ↔  ( 𝐴 𝐷 𝐵 )  ≤  ( ( 𝐶 𝐷 𝐴 )  +𝑒  ( 𝐶 𝐷 𝐵 ) ) ) ) | 
						
							| 21 | 12 16 20 | rspc3v | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ∀ 𝑎  ∈  𝑋 ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  →  ( 𝐴 𝐷 𝐵 )  ≤  ( ( 𝐶 𝐷 𝐴 )  +𝑒  ( 𝐶 𝐷 𝐵 ) ) ) ) | 
						
							| 22 | 21 | 3comr | ⊢ ( ( 𝐶  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ∀ 𝑎  ∈  𝑋 ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( 𝑎 𝐷 𝑏 )  ≤  ( ( 𝑐 𝐷 𝑎 )  +𝑒  ( 𝑐 𝐷 𝑏 ) )  →  ( 𝐴 𝐷 𝐵 )  ≤  ( ( 𝐶 𝐷 𝐴 )  +𝑒  ( 𝐶 𝐷 𝐵 ) ) ) ) | 
						
							| 23 | 8 22 | mpan9 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐶  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐵 )  ≤  ( ( 𝐶 𝐷 𝐴 )  +𝑒  ( 𝐶 𝐷 𝐵 ) ) ) |