Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V ) |
2 |
|
ispsmet |
⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) |
4 |
3
|
ibi |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
5 |
4
|
simprd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
6 |
5
|
r19.21bi |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
7 |
6
|
simprd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ) → ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
8 |
7
|
ralrimiva |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 𝐷 𝑏 ) = ( 𝐴 𝐷 𝑏 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑐 𝐷 𝑎 ) = ( 𝑐 𝐷 𝐴 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) = ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
12 |
9 11
|
breq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ↔ ( 𝐴 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 𝐷 𝑏 ) = ( 𝐴 𝐷 𝐵 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑐 𝐷 𝑏 ) = ( 𝑐 𝐷 𝐵 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) = ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝐵 ) ) ) |
16 |
13 15
|
breq12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ↔ ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝐵 ) ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 𝐷 𝐴 ) = ( 𝐶 𝐷 𝐴 ) ) |
18 |
|
oveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 𝐷 𝐵 ) = ( 𝐶 𝐷 𝐵 ) ) |
19 |
17 18
|
oveq12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝐵 ) ) = ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |
20 |
19
|
breq2d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝐵 ) ) ↔ ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
21 |
12 16 20
|
rspc3v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
22 |
21
|
3comr |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
23 |
8 22
|
mpan9 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |