Step |
Hyp |
Ref |
Expression |
1 |
|
metuust |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) ) |
2 |
|
utopval |
⊢ ( ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |
3 |
1 2
|
syl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |
4 |
3
|
eleq2d |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝑎 ∈ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) ) |
5 |
|
rabid |
⊢ ( 𝑎 ∈ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ↔ ( 𝑎 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) |
6 |
4 5
|
bitrdi |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ↔ ( 𝑎 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) ) |
7 |
6
|
biimpa |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) → ( 𝑎 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) |
8 |
7
|
simpld |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) → 𝑎 ∈ 𝒫 𝑋 ) |
9 |
8
|
elpwid |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) → 𝑎 ⊆ 𝑋 ) |
10 |
|
unirnblps |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∪ ran ( ball ‘ 𝐷 ) = 𝑋 ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) → ∪ ran ( ball ‘ 𝐷 ) = 𝑋 ) |
12 |
9 11
|
sseqtrrd |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) → 𝑎 ⊆ ∪ ran ( ball ‘ 𝐷 ) ) |
13 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) → ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) |
14 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
15 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) |
16 |
9
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑎 ⊆ 𝑋 ) |
17 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑥 ∈ 𝑎 ) |
18 |
16 17
|
sseldd |
⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑥 ∈ 𝑋 ) |
19 |
|
metustbl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑣 “ { 𝑥 } ) ) ) |
20 |
14 15 18 19
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) → ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑣 “ { 𝑥 } ) ) ) |
21 |
|
sstr |
⊢ ( ( 𝑏 ⊆ ( 𝑣 “ { 𝑥 } ) ∧ ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑏 ⊆ 𝑎 ) |
22 |
21
|
expcom |
⊢ ( ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 → ( 𝑏 ⊆ ( 𝑣 “ { 𝑥 } ) → 𝑏 ⊆ 𝑎 ) ) |
23 |
22
|
anim2d |
⊢ ( ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 → ( ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑣 “ { 𝑥 } ) ) → ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) |
24 |
23
|
reximdv |
⊢ ( ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 → ( ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑣 “ { 𝑥 } ) ) → ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) |
25 |
13 20 24
|
sylc |
⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) → ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) |
26 |
7
|
simprd |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) → ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) |
27 |
26
|
r19.21bi |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) |
28 |
25 27
|
r19.29a |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) |
29 |
28
|
ralrimiva |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) → ∀ 𝑥 ∈ 𝑎 ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) |
30 |
12 29
|
jca |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) → ( 𝑎 ⊆ ∪ ran ( ball ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) |
31 |
|
fvex |
⊢ ( ball ‘ 𝐷 ) ∈ V |
32 |
31
|
rnex |
⊢ ran ( ball ‘ 𝐷 ) ∈ V |
33 |
|
eltg2 |
⊢ ( ran ( ball ‘ 𝐷 ) ∈ V → ( 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ↔ ( 𝑎 ⊆ ∪ ran ( ball ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) ) |
34 |
32 33
|
mp1i |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) → ( 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ↔ ( 𝑎 ⊆ ∪ ran ( ball ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) ) |
35 |
30 34
|
mpbird |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) → 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
36 |
32 33
|
mp1i |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ↔ ( 𝑎 ⊆ ∪ ran ( ball ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) ) |
37 |
36
|
biimpa |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) → ( 𝑎 ⊆ ∪ ran ( ball ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) |
38 |
37
|
simpld |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) → 𝑎 ⊆ ∪ ran ( ball ‘ 𝐷 ) ) |
39 |
10
|
ad2antlr |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) → ∪ ran ( ball ‘ 𝐷 ) = 𝑋 ) |
40 |
38 39
|
sseqtrd |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) → 𝑎 ⊆ 𝑋 ) |
41 |
|
elpwg |
⊢ ( 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) → ( 𝑎 ∈ 𝒫 𝑋 ↔ 𝑎 ⊆ 𝑋 ) ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) → ( 𝑎 ∈ 𝒫 𝑋 ↔ 𝑎 ⊆ 𝑋 ) ) |
43 |
40 42
|
mpbird |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) → 𝑎 ∈ 𝒫 𝑋 ) |
44 |
|
simpllr |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
45 |
40
|
sselda |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → 𝑥 ∈ 𝑋 ) |
46 |
37
|
simprd |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) → ∀ 𝑥 ∈ 𝑎 ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) |
47 |
46
|
r19.21bi |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) |
48 |
|
blssexps |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ↔ ∃ 𝑑 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑎 ) ) |
49 |
44 45 48
|
syl2anc |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → ( ∃ 𝑏 ∈ ran ( ball ‘ 𝐷 ) ( 𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ↔ ∃ 𝑑 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑎 ) ) |
50 |
47 49
|
mpbid |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → ∃ 𝑑 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑎 ) |
51 |
|
blval2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑑 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) “ { 𝑥 } ) ) |
52 |
51
|
3expa |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) “ { 𝑥 } ) ) |
53 |
52
|
sseq1d |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑎 ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) ) |
54 |
53
|
rexbidva |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑑 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑎 ↔ ∃ 𝑑 ∈ ℝ+ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) ) |
55 |
54
|
biimpa |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∃ 𝑑 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑎 ) → ∃ 𝑑 ∈ ℝ+ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) |
56 |
44 45 50 55
|
syl21anc |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → ∃ 𝑑 ∈ ℝ+ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) |
57 |
|
cnvexg |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) |
58 |
|
imaexg |
⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ V ) |
59 |
57 58
|
syl |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ V ) |
60 |
59
|
ralrimivw |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑑 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ V ) |
61 |
|
eqid |
⊢ ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) = ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
62 |
|
imaeq1 |
⊢ ( 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → ( 𝑣 “ { 𝑥 } ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) “ { 𝑥 } ) ) |
63 |
62
|
sseq1d |
⊢ ( 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) → ( ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) ) |
64 |
61 63
|
rexrnmptw |
⊢ ( ∀ 𝑑 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ V → ( ∃ 𝑣 ∈ ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∃ 𝑑 ∈ ℝ+ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) ) |
65 |
44 60 64
|
3syl |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → ( ∃ 𝑣 ∈ ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∃ 𝑑 ∈ ℝ+ ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) ) |
66 |
56 65
|
mpbird |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → ∃ 𝑣 ∈ ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) |
67 |
|
oveq2 |
⊢ ( 𝑑 = 𝑒 → ( 0 [,) 𝑑 ) = ( 0 [,) 𝑒 ) ) |
68 |
67
|
imaeq2d |
⊢ ( 𝑑 = 𝑒 → ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑒 ) ) ) |
69 |
68
|
cbvmptv |
⊢ ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) = ( 𝑒 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑒 ) ) ) |
70 |
69
|
rneqi |
⊢ ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) = ran ( 𝑒 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑒 ) ) ) |
71 |
70
|
metustfbas |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
72 |
|
ssfg |
⊢ ( ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) → ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ⊆ ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) ) |
73 |
71 72
|
syl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ⊆ ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) ) |
74 |
|
metuval |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) ) |
75 |
74
|
adantl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) ) |
76 |
73 75
|
sseqtrrd |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ⊆ ( metUnif ‘ 𝐷 ) ) |
77 |
|
ssrexv |
⊢ ( ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ⊆ ( metUnif ‘ 𝐷 ) → ( ∃ 𝑣 ∈ ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) |
78 |
76 77
|
syl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ∃ 𝑣 ∈ ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → ( ∃ 𝑣 ∈ ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) |
80 |
66 79
|
mpd |
⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑎 ) → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) |
81 |
80
|
ralrimiva |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) → ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) |
82 |
43 81
|
jca |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) → ( 𝑎 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) |
83 |
6
|
biimpar |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) → 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) |
84 |
82 83
|
syldan |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) → 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) |
85 |
35 84
|
impbida |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑎 ∈ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝑎 ∈ ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) ) |
86 |
85
|
eqrdv |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |