Step |
Hyp |
Ref |
Expression |
1 |
|
psrgrp.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrgrp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrgrp.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
4 |
|
psr0.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
5 |
|
psr0.o |
⊢ 𝑂 = ( 0g ‘ 𝑅 ) |
6 |
|
psr0.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
9 |
1 2 3 4 5 7
|
psr0cl |
⊢ ( 𝜑 → ( 𝐷 × { 𝑂 } ) ∈ ( Base ‘ 𝑆 ) ) |
10 |
1 2 3 4 5 7 8 9
|
psr0lid |
⊢ ( 𝜑 → ( ( 𝐷 × { 𝑂 } ) ( +g ‘ 𝑆 ) ( 𝐷 × { 𝑂 } ) ) = ( 𝐷 × { 𝑂 } ) ) |
11 |
1 2 3
|
psrgrp |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
12 |
7 8 6
|
grpid |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝐷 × { 𝑂 } ) ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 𝐷 × { 𝑂 } ) ( +g ‘ 𝑆 ) ( 𝐷 × { 𝑂 } ) ) = ( 𝐷 × { 𝑂 } ) ↔ 0 = ( 𝐷 × { 𝑂 } ) ) ) |
13 |
11 9 12
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐷 × { 𝑂 } ) ( +g ‘ 𝑆 ) ( 𝐷 × { 𝑂 } ) ) = ( 𝐷 × { 𝑂 } ) ↔ 0 = ( 𝐷 × { 𝑂 } ) ) ) |
14 |
10 13
|
mpbid |
⊢ ( 𝜑 → 0 = ( 𝐷 × { 𝑂 } ) ) |