Metamath Proof Explorer


Theorem psr0

Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrgrp.i ( 𝜑𝐼𝑉 )
psrgrp.r ( 𝜑𝑅 ∈ Grp )
psr0.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
psr0.o 𝑂 = ( 0g𝑅 )
psr0.z 0 = ( 0g𝑆 )
Assertion psr0 ( 𝜑0 = ( 𝐷 × { 𝑂 } ) )

Proof

Step Hyp Ref Expression
1 psrgrp.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrgrp.i ( 𝜑𝐼𝑉 )
3 psrgrp.r ( 𝜑𝑅 ∈ Grp )
4 psr0.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
5 psr0.o 𝑂 = ( 0g𝑅 )
6 psr0.z 0 = ( 0g𝑆 )
7 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
8 eqid ( +g𝑆 ) = ( +g𝑆 )
9 1 2 3 4 5 7 psr0cl ( 𝜑 → ( 𝐷 × { 𝑂 } ) ∈ ( Base ‘ 𝑆 ) )
10 1 2 3 4 5 7 8 9 psr0lid ( 𝜑 → ( ( 𝐷 × { 𝑂 } ) ( +g𝑆 ) ( 𝐷 × { 𝑂 } ) ) = ( 𝐷 × { 𝑂 } ) )
11 1 2 3 psrgrp ( 𝜑𝑆 ∈ Grp )
12 7 8 6 grpid ( ( 𝑆 ∈ Grp ∧ ( 𝐷 × { 𝑂 } ) ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 𝐷 × { 𝑂 } ) ( +g𝑆 ) ( 𝐷 × { 𝑂 } ) ) = ( 𝐷 × { 𝑂 } ) ↔ 0 = ( 𝐷 × { 𝑂 } ) ) )
13 11 9 12 syl2anc ( 𝜑 → ( ( ( 𝐷 × { 𝑂 } ) ( +g𝑆 ) ( 𝐷 × { 𝑂 } ) ) = ( 𝐷 × { 𝑂 } ) ↔ 0 = ( 𝐷 × { 𝑂 } ) ) )
14 10 13 mpbid ( 𝜑0 = ( 𝐷 × { 𝑂 } ) )