Step |
Hyp |
Ref |
Expression |
1 |
|
psrgrp.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrgrp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrgrp.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
4 |
|
psr0cl.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
5 |
|
psr0cl.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
psr0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
7 5
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
9 |
|
fconst6g |
⊢ ( 0 ∈ ( Base ‘ 𝑅 ) → ( 𝐷 × { 0 } ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
10 |
3 8 9
|
3syl |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
11 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
12 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
13 |
4 12
|
rabex2 |
⊢ 𝐷 ∈ V |
14 |
11 13
|
elmap |
⊢ ( ( 𝐷 × { 0 } ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ ( 𝐷 × { 0 } ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
15 |
10 14
|
sylibr |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
16 |
1 7 4 6 2
|
psrbas |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
17 |
15 16
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝐵 ) |