| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrgrp.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
psrgrp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 3 |
|
psrgrp.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 4 |
|
psr0cl.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 5 |
|
psr0cl.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
psr0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 7 |
|
psr0lid.p |
⊢ + = ( +g ‘ 𝑆 ) |
| 8 |
|
psr0lid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 10 |
1 2 3 4 5 6
|
psr0cl |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝐵 ) |
| 11 |
1 6 9 7 10 8
|
psradd |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) + 𝑋 ) = ( ( 𝐷 × { 0 } ) ∘f ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 12 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 13 |
4 12
|
rabex2 |
⊢ 𝐷 ∈ V |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 16 |
1 15 4 6 8
|
psrelbas |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 17 |
5
|
fvexi |
⊢ 0 ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 19 |
15 9 5
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 20 |
3 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 21 |
14 16 18 20
|
caofid0l |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) ∘f ( +g ‘ 𝑅 ) 𝑋 ) = 𝑋 ) |
| 22 |
11 21
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) + 𝑋 ) = 𝑋 ) |