Metamath Proof Explorer


Theorem psr0lid

Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrgrp.i ( 𝜑𝐼𝑉 )
psrgrp.r ( 𝜑𝑅 ∈ Grp )
psr0cl.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
psr0cl.o 0 = ( 0g𝑅 )
psr0cl.b 𝐵 = ( Base ‘ 𝑆 )
psr0lid.p + = ( +g𝑆 )
psr0lid.x ( 𝜑𝑋𝐵 )
Assertion psr0lid ( 𝜑 → ( ( 𝐷 × { 0 } ) + 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 psrgrp.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrgrp.i ( 𝜑𝐼𝑉 )
3 psrgrp.r ( 𝜑𝑅 ∈ Grp )
4 psr0cl.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
5 psr0cl.o 0 = ( 0g𝑅 )
6 psr0cl.b 𝐵 = ( Base ‘ 𝑆 )
7 psr0lid.p + = ( +g𝑆 )
8 psr0lid.x ( 𝜑𝑋𝐵 )
9 eqid ( +g𝑅 ) = ( +g𝑅 )
10 1 2 3 4 5 6 psr0cl ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝐵 )
11 1 6 9 7 10 8 psradd ( 𝜑 → ( ( 𝐷 × { 0 } ) + 𝑋 ) = ( ( 𝐷 × { 0 } ) ∘f ( +g𝑅 ) 𝑋 ) )
12 ovex ( ℕ0m 𝐼 ) ∈ V
13 4 12 rabex2 𝐷 ∈ V
14 13 a1i ( 𝜑𝐷 ∈ V )
15 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
16 1 15 4 6 8 psrelbas ( 𝜑𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
17 5 fvexi 0 ∈ V
18 17 a1i ( 𝜑0 ∈ V )
19 15 9 5 grplid ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g𝑅 ) 𝑥 ) = 𝑥 )
20 3 19 sylan ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g𝑅 ) 𝑥 ) = 𝑥 )
21 14 16 18 20 caofid0l ( 𝜑 → ( ( 𝐷 × { 0 } ) ∘f ( +g𝑅 ) 𝑋 ) = 𝑋 )
22 11 21 eqtrd ( 𝜑 → ( ( 𝐷 × { 0 } ) + 𝑋 ) = 𝑋 )