Step |
Hyp |
Ref |
Expression |
1 |
|
psrgrp.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrgrp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrgrp.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
4 |
|
psr0cl.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
5 |
|
psr0cl.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
psr0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
7 |
|
psr0lid.p |
⊢ + = ( +g ‘ 𝑆 ) |
8 |
|
psr0lid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
10 |
1 2 3 4 5 6
|
psr0cl |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝐵 ) |
11 |
1 6 9 7 10 8
|
psradd |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) + 𝑋 ) = ( ( 𝐷 × { 0 } ) ∘f ( +g ‘ 𝑅 ) 𝑋 ) ) |
12 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
13 |
4 12
|
rabex2 |
⊢ 𝐷 ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
1 15 4 6 8
|
psrelbas |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
17 |
5
|
fvexi |
⊢ 0 ∈ V |
18 |
17
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
19 |
15 9 5
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
20 |
3 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
21 |
14 16 18 20
|
caofid0l |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) ∘f ( +g ‘ 𝑅 ) 𝑋 ) = 𝑋 ) |
22 |
11 21
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) + 𝑋 ) = 𝑋 ) |