| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrring.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrring.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | psr1.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 5 |  | psr1.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 6 |  | psr1.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 7 |  | psr1.u | ⊢ 𝑈  =  ( 1r ‘ 𝑆 ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) )  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 10 | 1 2 3 4 5 6 8 9 | psr1cl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 11 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑅  ∈  Ring ) | 
						
							| 13 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 15 | 1 11 12 4 5 6 8 9 13 14 | psrlidm | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) ( .r ‘ 𝑆 ) 𝑦 )  =  𝑦 ) | 
						
							| 16 | 1 11 12 4 5 6 8 9 13 14 | psrridm | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) )  =  𝑦 ) | 
						
							| 17 | 15 16 | jca | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) ( .r ‘ 𝑆 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) )  =  𝑦 ) ) | 
						
							| 18 | 17 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) ( .r ‘ 𝑆 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) )  =  𝑦 ) ) | 
						
							| 19 | 1 2 3 | psrring | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 20 | 9 13 7 | isringid | ⊢ ( 𝑆  ∈  Ring  →  ( ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) )  ∈  ( Base ‘ 𝑆 )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) ( .r ‘ 𝑆 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) )  =  𝑦 ) )  ↔  𝑈  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) )  ∈  ( Base ‘ 𝑆 )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) ( .r ‘ 𝑆 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) )  =  𝑦 ) )  ↔  𝑈  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) ) ) | 
						
							| 22 | 10 18 21 | mpbi2and | ⊢ ( 𝜑  →  𝑈  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) ) |