Metamath Proof Explorer


Theorem psr1bascl

Description: A univariate power series is a multivariate power series on one index. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses psr1rcl.p 𝑃 = ( PwSer1𝑅 )
psr1rcl.b 𝐵 = ( Base ‘ 𝑃 )
Assertion psr1bascl ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 psr1rcl.p 𝑃 = ( PwSer1𝑅 )
2 psr1rcl.b 𝐵 = ( Base ‘ 𝑃 )
3 id ( 𝐹𝐵𝐹𝐵 )
4 eqid ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 )
5 1 2 4 psr1bas2 𝐵 = ( Base ‘ ( 1o mPwSer 𝑅 ) )
6 3 5 eleqtrdi ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) )