Metamath Proof Explorer
		
		
		
		Description:  A univariate power series is a multivariate power series on one index.
       (Contributed by Stefan O'Rear, 25-Mar-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | psr1rcl.p | ⊢ 𝑃  =  ( PwSer1 ‘ 𝑅 ) | 
					
						|  |  | psr1rcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
				
					|  | Assertion | psr1bascl | ⊢  ( 𝐹  ∈  𝐵  →  𝐹  ∈  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psr1rcl.p | ⊢ 𝑃  =  ( PwSer1 ‘ 𝑅 ) | 
						
							| 2 |  | psr1rcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | id | ⊢ ( 𝐹  ∈  𝐵  →  𝐹  ∈  𝐵 ) | 
						
							| 4 |  | eqid | ⊢ ( 1o  mPwSer  𝑅 )  =  ( 1o  mPwSer  𝑅 ) | 
						
							| 5 | 1 2 4 | psr1bas2 | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 6 | 3 5 | eleqtrdi | ⊢ ( 𝐹  ∈  𝐵  →  𝐹  ∈  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) ) |