Metamath Proof Explorer
Description: A univariate power series is a multivariate power series on one index.
(Contributed by Stefan O'Rear, 25-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
psr1rcl.p |
⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) |
|
|
psr1rcl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
|
Assertion |
psr1bascl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
psr1rcl.p |
⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) |
2 |
|
psr1rcl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
id |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵 ) |
4 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
5 |
1 2 4
|
psr1bas2 |
⊢ 𝐵 = ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
6 |
3 5
|
eleqtrdi |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |