Step |
Hyp |
Ref |
Expression |
1 |
|
rabid2 |
⊢ ( ( ℕ0 ↑m 1o ) = { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↔ ∀ 𝑓 ∈ ( ℕ0 ↑m 1o ) ( ◡ 𝑓 “ ℕ ) ∈ Fin ) |
2 |
|
df1o2 |
⊢ 1o = { ∅ } |
3 |
|
snfi |
⊢ { ∅ } ∈ Fin |
4 |
2 3
|
eqeltri |
⊢ 1o ∈ Fin |
5 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ ℕ ) ⊆ dom 𝑓 |
6 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 1o ) → 𝑓 : 1o ⟶ ℕ0 ) |
7 |
5 6
|
fssdm |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 1o ) → ( ◡ 𝑓 “ ℕ ) ⊆ 1o ) |
8 |
|
ssfi |
⊢ ( ( 1o ∈ Fin ∧ ( ◡ 𝑓 “ ℕ ) ⊆ 1o ) → ( ◡ 𝑓 “ ℕ ) ∈ Fin ) |
9 |
4 7 8
|
sylancr |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 1o ) → ( ◡ 𝑓 “ ℕ ) ∈ Fin ) |
10 |
1 9
|
mprgbir |
⊢ ( ℕ0 ↑m 1o ) = { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |