Metamath Proof Explorer


Theorem psr1plusg

Description: Value of addition in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses psr1plusg.y 𝑌 = ( PwSer1𝑅 )
psr1plusg.s 𝑆 = ( 1o mPwSer 𝑅 )
psr1plusg.p + = ( +g𝑌 )
Assertion psr1plusg + = ( +g𝑆 )

Proof

Step Hyp Ref Expression
1 psr1plusg.y 𝑌 = ( PwSer1𝑅 )
2 psr1plusg.s 𝑆 = ( 1o mPwSer 𝑅 )
3 psr1plusg.p + = ( +g𝑌 )
4 1 psr1val 𝑌 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ )
5 0ss ∅ ⊆ ( 1o × 1o )
6 5 a1i ( ⊤ → ∅ ⊆ ( 1o × 1o ) )
7 2 4 6 opsrplusg ( ⊤ → ( +g𝑆 ) = ( +g𝑌 ) )
8 7 mptru ( +g𝑆 ) = ( +g𝑌 )
9 3 8 eqtr4i + = ( +g𝑆 )