Metamath Proof Explorer
		
		
		
		Description:  Value of addition in a univariate power series ring.  (Contributed by Stefan O'Rear, 21-Mar-2015)  (Revised by Mario Carneiro, 2-Oct-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | psr1plusg.y | ⊢ 𝑌  =  ( PwSer1 ‘ 𝑅 ) | 
					
						|  |  | psr1plusg.s | ⊢ 𝑆  =  ( 1o  mPwSer  𝑅 ) | 
					
						|  |  | psr1plusg.p | ⊢  +   =  ( +g ‘ 𝑌 ) | 
				
					|  | Assertion | psr1plusg | ⊢   +   =  ( +g ‘ 𝑆 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psr1plusg.y | ⊢ 𝑌  =  ( PwSer1 ‘ 𝑅 ) | 
						
							| 2 |  | psr1plusg.s | ⊢ 𝑆  =  ( 1o  mPwSer  𝑅 ) | 
						
							| 3 |  | psr1plusg.p | ⊢  +   =  ( +g ‘ 𝑌 ) | 
						
							| 4 | 1 | psr1val | ⊢ 𝑌  =  ( ( 1o  ordPwSer  𝑅 ) ‘ ∅ ) | 
						
							| 5 |  | 0ss | ⊢ ∅  ⊆  ( 1o  ×  1o ) | 
						
							| 6 | 5 | a1i | ⊢ ( ⊤  →  ∅  ⊆  ( 1o  ×  1o ) ) | 
						
							| 7 | 2 4 6 | opsrplusg | ⊢ ( ⊤  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑌 ) ) | 
						
							| 8 | 7 | mptru | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑌 ) | 
						
							| 9 | 3 8 | eqtr4i | ⊢  +   =  ( +g ‘ 𝑆 ) |