Metamath Proof Explorer


Theorem psr1tos

Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 2-Jun-2015)

Ref Expression
Hypothesis psr1val.1 𝑆 = ( PwSer1𝑅 )
Assertion psr1tos ( 𝑅 ∈ Toset → 𝑆 ∈ Toset )

Proof

Step Hyp Ref Expression
1 psr1val.1 𝑆 = ( PwSer1𝑅 )
2 1 psr1val 𝑆 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ )
3 1on 1o ∈ On
4 3 a1i ( 𝑅 ∈ Toset → 1o ∈ On )
5 id ( 𝑅 ∈ Toset → 𝑅 ∈ Toset )
6 0ss ∅ ⊆ ( 1o × 1o )
7 6 a1i ( 𝑅 ∈ Toset → ∅ ⊆ ( 1o × 1o ) )
8 0we1 ∅ We 1o
9 8 a1i ( 𝑅 ∈ Toset → ∅ We 1o )
10 2 4 5 7 9 opsrtos ( 𝑅 ∈ Toset → 𝑆 ∈ Toset )