Step |
Hyp |
Ref |
Expression |
1 |
|
psr1val.1 |
⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) |
2 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 1o ordPwSer 𝑟 ) = ( 1o ordPwSer 𝑅 ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 1o ordPwSer 𝑟 ) ‘ ∅ ) = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) ) |
4 |
|
df-psr1 |
⊢ PwSer1 = ( 𝑟 ∈ V ↦ ( ( 1o ordPwSer 𝑟 ) ‘ ∅ ) ) |
5 |
|
fvex |
⊢ ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) ∈ V |
6 |
3 4 5
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( PwSer1 ‘ 𝑅 ) = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) ) |
7 |
|
0fv |
⊢ ( ∅ ‘ ∅ ) = ∅ |
8 |
7
|
eqcomi |
⊢ ∅ = ( ∅ ‘ ∅ ) |
9 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( PwSer1 ‘ 𝑅 ) = ∅ ) |
10 |
|
reldmopsr |
⊢ Rel dom ordPwSer |
11 |
10
|
ovprc2 |
⊢ ( ¬ 𝑅 ∈ V → ( 1o ordPwSer 𝑅 ) = ∅ ) |
12 |
11
|
fveq1d |
⊢ ( ¬ 𝑅 ∈ V → ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) = ( ∅ ‘ ∅ ) ) |
13 |
8 9 12
|
3eqtr4a |
⊢ ( ¬ 𝑅 ∈ V → ( PwSer1 ‘ 𝑅 ) = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) ) |
14 |
6 13
|
pm2.61i |
⊢ ( PwSer1 ‘ 𝑅 ) = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |
15 |
1 14
|
eqtri |
⊢ 𝑆 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |