Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
psr1vsca
Metamath Proof Explorer
Description: Value of scalar multiplication in a univariate power series ring.
(Contributed by Stefan O'Rear , 21-Mar-2015) (Revised by Mario
Carneiro , 2-Oct-2015)
Ref
Expression
Hypotheses
psr1plusg.y
⊢ 𝑌 = ( PwSer1 ‘ 𝑅 )
psr1plusg.s
⊢ 𝑆 = ( 1o mPwSer 𝑅 )
psr1vscafval.n
⊢ · = ( · 𝑠 ‘ 𝑌 )
Assertion
psr1vsca
⊢ · = ( · 𝑠 ‘ 𝑆 )
Proof
Step
Hyp
Ref
Expression
1
psr1plusg.y
⊢ 𝑌 = ( PwSer1 ‘ 𝑅 )
2
psr1plusg.s
⊢ 𝑆 = ( 1o mPwSer 𝑅 )
3
psr1vscafval.n
⊢ · = ( · 𝑠 ‘ 𝑌 )
4
1
psr1val
⊢ 𝑌 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ )
5
0ss
⊢ ∅ ⊆ ( 1o × 1o )
6
5
a1i
⊢ ( ⊤ → ∅ ⊆ ( 1o × 1o ) )
7
2 4 6
opsrvsca
⊢ ( ⊤ → ( · 𝑠 ‘ 𝑆 ) = ( · 𝑠 ‘ 𝑌 ) )
8
7
mptru
⊢ ( · 𝑠 ‘ 𝑆 ) = ( · 𝑠 ‘ 𝑌 )
9
3 8
eqtr4i
⊢ · = ( · 𝑠 ‘ 𝑆 )