| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrascl.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrascl.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 3 |  | psrascl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | psrascl.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | psrascl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑆 ) | 
						
							| 6 |  | psrascl.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 7 |  | psrascl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 8 |  | psrascl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐾 ) | 
						
							| 9 | 1 6 7 | psrsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 11 | 4 10 | eqtrid | ⊢ ( 𝜑  →  𝐾  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 12 | 8 11 | eleqtrd | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑆 ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) | 
						
							| 15 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 16 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 17 | 5 13 14 15 16 | asclval | ⊢ ( 𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  →  ( 𝐴 ‘ 𝑋 )  =  ( 𝑋 (  ·𝑠  ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) | 
						
							| 18 | 12 17 | syl | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑋 )  =  ( 𝑋 (  ·𝑠  ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 20 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 21 | 1 6 7 | psrring | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 22 | 19 16 | ringidcl | ⊢ ( 𝑆  ∈  Ring  →  ( 1r ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 24 | 1 15 4 19 20 2 8 23 | psrvsca | ⊢ ( 𝜑  →  ( 𝑋 (  ·𝑠  ‘ 𝑆 ) ( 1r ‘ 𝑆 ) )  =  ( ( 𝐷  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) ( 1r ‘ 𝑆 ) ) ) | 
						
							| 25 |  | fnconstg | ⊢ ( 𝑋  ∈  𝐾  →  ( 𝐷  ×  { 𝑋 } )  Fn  𝐷 ) | 
						
							| 26 | 8 25 | syl | ⊢ ( 𝜑  →  ( 𝐷  ×  { 𝑋 } )  Fn  𝐷 ) | 
						
							| 27 | 1 4 2 19 23 | psrelbas | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 ) : 𝐷 ⟶ 𝐾 ) | 
						
							| 28 | 27 | ffnd | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  Fn  𝐷 ) | 
						
							| 29 |  | ovexd | ⊢ ( 𝜑  →  ( ℕ0  ↑m  𝐼 )  ∈  V ) | 
						
							| 30 | 2 29 | rabexd | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 31 |  | inidm | ⊢ ( 𝐷  ∩  𝐷 )  =  𝐷 | 
						
							| 32 |  | fvconst2g | ⊢ ( ( 𝑋  ∈  𝐾  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝐷  ×  { 𝑋 } ) ‘ 𝑦 )  =  𝑋 ) | 
						
							| 33 | 8 32 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝐷  ×  { 𝑋 } ) ‘ 𝑦 )  =  𝑋 ) | 
						
							| 34 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 35 | 1 6 7 2 3 34 16 | psr1 | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  =  ( 𝑑  ∈  𝐷  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 1r ‘ 𝑆 )  =  ( 𝑑  ∈  𝐷  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) | 
						
							| 37 | 36 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 1r ‘ 𝑆 ) ‘ 𝑦 )  =  ( ( 𝑑  ∈  𝐷  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ‘ 𝑦 ) ) | 
						
							| 38 |  | eqeq1 | ⊢ ( 𝑑  =  𝑦  →  ( 𝑑  =  ( 𝐼  ×  { 0 } )  ↔  𝑦  =  ( 𝐼  ×  { 0 } ) ) ) | 
						
							| 39 | 38 | ifbid | ⊢ ( 𝑑  =  𝑦  →  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  )  =  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) | 
						
							| 40 |  | eqid | ⊢ ( 𝑑  ∈  𝐷  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) )  =  ( 𝑑  ∈  𝐷  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) | 
						
							| 41 |  | fvex | ⊢ ( 1r ‘ 𝑅 )  ∈  V | 
						
							| 42 | 3 | fvexi | ⊢  0   ∈  V | 
						
							| 43 | 41 42 | ifex | ⊢ if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  )  ∈  V | 
						
							| 44 | 39 40 43 | fvmpt | ⊢ ( 𝑦  ∈  𝐷  →  ( ( 𝑑  ∈  𝐷  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ‘ 𝑦 )  =  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑑  ∈  𝐷  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ‘ 𝑦 )  =  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) | 
						
							| 46 | 37 45 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 1r ‘ 𝑆 ) ‘ 𝑦 )  =  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) | 
						
							| 47 | 26 28 30 30 31 33 46 | offval | ⊢ ( 𝜑  →  ( ( 𝐷  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) ( 1r ‘ 𝑆 ) )  =  ( 𝑦  ∈  𝐷  ↦  ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) | 
						
							| 48 |  | ovif2 | ⊢ ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) )  =  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ,  ( 𝑋 ( .r ‘ 𝑅 )  0  ) ) | 
						
							| 49 | 4 20 34 7 8 | ringridmd | ⊢ ( 𝜑  →  ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  =  𝑋 ) | 
						
							| 50 | 4 20 3 7 8 | ringrzd | ⊢ ( 𝜑  →  ( 𝑋 ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 51 | 49 50 | ifeq12d | ⊢ ( 𝜑  →  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ,  ( 𝑋 ( .r ‘ 𝑅 )  0  ) )  =  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,   0  ) ) | 
						
							| 52 | 48 51 | eqtrid | ⊢ ( 𝜑  →  ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) )  =  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,   0  ) ) | 
						
							| 53 | 52 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,   0  ) ) ) | 
						
							| 54 | 47 53 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐷  ×  { 𝑋 } )  ∘f  ( .r ‘ 𝑅 ) ( 1r ‘ 𝑆 ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,   0  ) ) ) | 
						
							| 55 | 18 24 54 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑋 )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,   0  ) ) ) |