Step |
Hyp |
Ref |
Expression |
1 |
|
psrascl.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrascl.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
3 |
|
psrascl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
psrascl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
psrascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑆 ) |
6 |
|
psrascl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
7 |
|
psrascl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
8 |
|
psrascl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
9 |
1 6 7
|
psrsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
11 |
4 10
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
12 |
8 11
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
13 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
15 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
16 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
17 |
5 13 14 15 16
|
asclval |
⊢ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
18 |
12 17
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
20 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
21 |
1 6 7
|
psrring |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
22 |
19 16
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
24 |
1 15 4 19 20 2 8 23
|
psrvsca |
⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = ( ( 𝐷 × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) ( 1r ‘ 𝑆 ) ) ) |
25 |
|
fnconstg |
⊢ ( 𝑋 ∈ 𝐾 → ( 𝐷 × { 𝑋 } ) Fn 𝐷 ) |
26 |
8 25
|
syl |
⊢ ( 𝜑 → ( 𝐷 × { 𝑋 } ) Fn 𝐷 ) |
27 |
1 4 2 19 23
|
psrelbas |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) : 𝐷 ⟶ 𝐾 ) |
28 |
27
|
ffnd |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) Fn 𝐷 ) |
29 |
|
ovexd |
⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) |
30 |
2 29
|
rabexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
31 |
|
inidm |
⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 |
32 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐷 × { 𝑋 } ) ‘ 𝑦 ) = 𝑋 ) |
33 |
8 32
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐷 × { 𝑋 } ) ‘ 𝑦 ) = 𝑋 ) |
34 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
35 |
1 6 7 2 3 34 16
|
psr1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 1r ‘ 𝑆 ) = ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) |
37 |
36
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 1r ‘ 𝑆 ) ‘ 𝑦 ) = ( ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ‘ 𝑦 ) ) |
38 |
|
eqeq1 |
⊢ ( 𝑑 = 𝑦 → ( 𝑑 = ( 𝐼 × { 0 } ) ↔ 𝑦 = ( 𝐼 × { 0 } ) ) ) |
39 |
38
|
ifbid |
⊢ ( 𝑑 = 𝑦 → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) |
40 |
|
eqid |
⊢ ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) = ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) |
41 |
|
fvex |
⊢ ( 1r ‘ 𝑅 ) ∈ V |
42 |
3
|
fvexi |
⊢ 0 ∈ V |
43 |
41 42
|
ifex |
⊢ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ∈ V |
44 |
39 40 43
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐷 → ( ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ‘ 𝑦 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ‘ 𝑦 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) |
46 |
37 45
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 1r ‘ 𝑆 ) ‘ 𝑦 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) |
47 |
26 28 30 30 31 33 46
|
offval |
⊢ ( 𝜑 → ( ( 𝐷 × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) ( 1r ‘ 𝑆 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
48 |
|
ovif2 |
⊢ ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) , ( 𝑋 ( .r ‘ 𝑅 ) 0 ) ) |
49 |
4 20 34 7 8
|
ringridmd |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
50 |
4 20 3 7 8
|
ringrzd |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
51 |
49 50
|
ifeq12d |
⊢ ( 𝜑 → if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) , ( 𝑋 ( .r ‘ 𝑅 ) 0 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) |
52 |
48 51
|
eqtrid |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) |
53 |
52
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |
54 |
47 53
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) ( 1r ‘ 𝑆 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |
55 |
18 24 54
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |