Metamath Proof Explorer


Theorem psrascl

Description: Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025)

Ref Expression
Hypotheses psrascl.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrascl.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
psrascl.z 0 = ( 0g𝑅 )
psrascl.k 𝐾 = ( Base ‘ 𝑅 )
psrascl.a 𝐴 = ( algSc ‘ 𝑆 )
psrascl.i ( 𝜑𝐼𝑉 )
psrascl.r ( 𝜑𝑅 ∈ Ring )
psrascl.x ( 𝜑𝑋𝐾 )
Assertion psrascl ( 𝜑 → ( 𝐴𝑋 ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) )

Proof

Step Hyp Ref Expression
1 psrascl.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrascl.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
3 psrascl.z 0 = ( 0g𝑅 )
4 psrascl.k 𝐾 = ( Base ‘ 𝑅 )
5 psrascl.a 𝐴 = ( algSc ‘ 𝑆 )
6 psrascl.i ( 𝜑𝐼𝑉 )
7 psrascl.r ( 𝜑𝑅 ∈ Ring )
8 psrascl.x ( 𝜑𝑋𝐾 )
9 1 6 7 psrsca ( 𝜑𝑅 = ( Scalar ‘ 𝑆 ) )
10 9 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) )
11 4 10 eqtrid ( 𝜑𝐾 = ( Base ‘ ( Scalar ‘ 𝑆 ) ) )
12 8 11 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) )
13 eqid ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 )
14 eqid ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) )
15 eqid ( ·𝑠𝑆 ) = ( ·𝑠𝑆 )
16 eqid ( 1r𝑆 ) = ( 1r𝑆 )
17 5 13 14 15 16 asclval ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) → ( 𝐴𝑋 ) = ( 𝑋 ( ·𝑠𝑆 ) ( 1r𝑆 ) ) )
18 12 17 syl ( 𝜑 → ( 𝐴𝑋 ) = ( 𝑋 ( ·𝑠𝑆 ) ( 1r𝑆 ) ) )
19 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
20 eqid ( .r𝑅 ) = ( .r𝑅 )
21 1 6 7 psrring ( 𝜑𝑆 ∈ Ring )
22 19 16 ringidcl ( 𝑆 ∈ Ring → ( 1r𝑆 ) ∈ ( Base ‘ 𝑆 ) )
23 21 22 syl ( 𝜑 → ( 1r𝑆 ) ∈ ( Base ‘ 𝑆 ) )
24 1 15 4 19 20 2 8 23 psrvsca ( 𝜑 → ( 𝑋 ( ·𝑠𝑆 ) ( 1r𝑆 ) ) = ( ( 𝐷 × { 𝑋 } ) ∘f ( .r𝑅 ) ( 1r𝑆 ) ) )
25 fnconstg ( 𝑋𝐾 → ( 𝐷 × { 𝑋 } ) Fn 𝐷 )
26 8 25 syl ( 𝜑 → ( 𝐷 × { 𝑋 } ) Fn 𝐷 )
27 1 4 2 19 23 psrelbas ( 𝜑 → ( 1r𝑆 ) : 𝐷𝐾 )
28 27 ffnd ( 𝜑 → ( 1r𝑆 ) Fn 𝐷 )
29 ovexd ( 𝜑 → ( ℕ0m 𝐼 ) ∈ V )
30 2 29 rabexd ( 𝜑𝐷 ∈ V )
31 inidm ( 𝐷𝐷 ) = 𝐷
32 fvconst2g ( ( 𝑋𝐾𝑦𝐷 ) → ( ( 𝐷 × { 𝑋 } ) ‘ 𝑦 ) = 𝑋 )
33 8 32 sylan ( ( 𝜑𝑦𝐷 ) → ( ( 𝐷 × { 𝑋 } ) ‘ 𝑦 ) = 𝑋 )
34 eqid ( 1r𝑅 ) = ( 1r𝑅 )
35 1 6 7 2 3 34 16 psr1 ( 𝜑 → ( 1r𝑆 ) = ( 𝑑𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ) )
36 35 adantr ( ( 𝜑𝑦𝐷 ) → ( 1r𝑆 ) = ( 𝑑𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ) )
37 36 fveq1d ( ( 𝜑𝑦𝐷 ) → ( ( 1r𝑆 ) ‘ 𝑦 ) = ( ( 𝑑𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ) ‘ 𝑦 ) )
38 eqeq1 ( 𝑑 = 𝑦 → ( 𝑑 = ( 𝐼 × { 0 } ) ↔ 𝑦 = ( 𝐼 × { 0 } ) ) )
39 38 ifbid ( 𝑑 = 𝑦 → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) )
40 eqid ( 𝑑𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ) = ( 𝑑𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) )
41 fvex ( 1r𝑅 ) ∈ V
42 3 fvexi 0 ∈ V
43 41 42 ifex if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ∈ V
44 39 40 43 fvmpt ( 𝑦𝐷 → ( ( 𝑑𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ) ‘ 𝑦 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) )
45 44 adantl ( ( 𝜑𝑦𝐷 ) → ( ( 𝑑𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ) ‘ 𝑦 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) )
46 37 45 eqtrd ( ( 𝜑𝑦𝐷 ) → ( ( 1r𝑆 ) ‘ 𝑦 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) )
47 26 28 30 30 31 33 46 offval ( 𝜑 → ( ( 𝐷 × { 𝑋 } ) ∘f ( .r𝑅 ) ( 1r𝑆 ) ) = ( 𝑦𝐷 ↦ ( 𝑋 ( .r𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ) ) )
48 ovif2 ( 𝑋 ( .r𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 𝑋 ( .r𝑅 ) ( 1r𝑅 ) ) , ( 𝑋 ( .r𝑅 ) 0 ) )
49 4 20 34 7 8 ringridmd ( 𝜑 → ( 𝑋 ( .r𝑅 ) ( 1r𝑅 ) ) = 𝑋 )
50 4 20 3 7 8 ringrzd ( 𝜑 → ( 𝑋 ( .r𝑅 ) 0 ) = 0 )
51 49 50 ifeq12d ( 𝜑 → if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 𝑋 ( .r𝑅 ) ( 1r𝑅 ) ) , ( 𝑋 ( .r𝑅 ) 0 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) )
52 48 51 eqtrid ( 𝜑 → ( 𝑋 ( .r𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) )
53 52 mpteq2dv ( 𝜑 → ( 𝑦𝐷 ↦ ( 𝑋 ( .r𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , 0 ) ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) )
54 47 53 eqtrd ( 𝜑 → ( ( 𝐷 × { 𝑋 } ) ∘f ( .r𝑅 ) ( 1r𝑆 ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) )
55 18 24 54 3eqtrd ( 𝜑 → ( 𝐴𝑋 ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) )