Metamath Proof Explorer


Theorem psrasclcl

Description: A scalar is lifted into a member of the power series. (Contributed by SN, 25-Apr-2025)

Ref Expression
Hypotheses psrasclcl.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrasclcl.b 𝐵 = ( Base ‘ 𝑆 )
psrasclcl.k 𝐾 = ( Base ‘ 𝑅 )
psrasclcl.a 𝐴 = ( algSc ‘ 𝑆 )
psrasclcl.i ( 𝜑𝐼𝑊 )
psrasclcl.r ( 𝜑𝑅 ∈ Ring )
psrasclcl.c ( 𝜑𝐶𝐾 )
Assertion psrasclcl ( 𝜑 → ( 𝐴𝐶 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 psrasclcl.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrasclcl.b 𝐵 = ( Base ‘ 𝑆 )
3 psrasclcl.k 𝐾 = ( Base ‘ 𝑅 )
4 psrasclcl.a 𝐴 = ( algSc ‘ 𝑆 )
5 psrasclcl.i ( 𝜑𝐼𝑊 )
6 psrasclcl.r ( 𝜑𝑅 ∈ Ring )
7 psrasclcl.c ( 𝜑𝐶𝐾 )
8 eqid ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 )
9 1 5 6 psrring ( 𝜑𝑆 ∈ Ring )
10 1 5 6 psrlmod ( 𝜑𝑆 ∈ LMod )
11 eqid ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) )
12 4 8 9 10 11 2 asclf ( 𝜑𝐴 : ( Base ‘ ( Scalar ‘ 𝑆 ) ) ⟶ 𝐵 )
13 1 5 6 psrsca ( 𝜑𝑅 = ( Scalar ‘ 𝑆 ) )
14 13 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) )
15 3 14 eqtrid ( 𝜑𝐾 = ( Base ‘ ( Scalar ‘ 𝑆 ) ) )
16 15 feq2d ( 𝜑 → ( 𝐴 : 𝐾𝐵𝐴 : ( Base ‘ ( Scalar ‘ 𝑆 ) ) ⟶ 𝐵 ) )
17 12 16 mpbird ( 𝜑𝐴 : 𝐾𝐵 )
18 17 7 ffvelcdmd ( 𝜑 → ( 𝐴𝐶 ) ∈ 𝐵 )