Step |
Hyp |
Ref |
Expression |
1 |
|
psrasclcl.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrasclcl.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
psrasclcl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
psrasclcl.a |
⊢ 𝐴 = ( algSc ‘ 𝑆 ) |
5 |
|
psrasclcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
psrasclcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
psrasclcl.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
9 |
1 5 6
|
psrring |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
10 |
1 5 6
|
psrlmod |
⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
11 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
12 |
4 8 9 10 11 2
|
asclf |
⊢ ( 𝜑 → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑆 ) ) ⟶ 𝐵 ) |
13 |
1 5 6
|
psrsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
15 |
3 14
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
16 |
15
|
feq2d |
⊢ ( 𝜑 → ( 𝐴 : 𝐾 ⟶ 𝐵 ↔ 𝐴 : ( Base ‘ ( Scalar ‘ 𝑆 ) ) ⟶ 𝐵 ) ) |
17 |
12 16
|
mpbird |
⊢ ( 𝜑 → 𝐴 : 𝐾 ⟶ 𝐵 ) |
18 |
17 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ 𝐵 ) |