| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrasclcl.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrasclcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | psrasclcl.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | psrasclcl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑆 ) | 
						
							| 5 |  | psrasclcl.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | psrasclcl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | psrasclcl.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐾 ) | 
						
							| 8 |  | eqid | ⊢ ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑆 ) | 
						
							| 9 | 1 5 6 | psrring | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 10 | 1 5 6 | psrlmod | ⊢ ( 𝜑  →  𝑆  ∈  LMod ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) | 
						
							| 12 | 4 8 9 10 11 2 | asclf | ⊢ ( 𝜑  →  𝐴 : ( Base ‘ ( Scalar ‘ 𝑆 ) ) ⟶ 𝐵 ) | 
						
							| 13 | 1 5 6 | psrsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 15 | 3 14 | eqtrid | ⊢ ( 𝜑  →  𝐾  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | 
						
							| 16 | 15 | feq2d | ⊢ ( 𝜑  →  ( 𝐴 : 𝐾 ⟶ 𝐵  ↔  𝐴 : ( Base ‘ ( Scalar ‘ 𝑆 ) ) ⟶ 𝐵 ) ) | 
						
							| 17 | 12 16 | mpbird | ⊢ ( 𝜑  →  𝐴 : 𝐾 ⟶ 𝐵 ) | 
						
							| 18 | 17 7 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝐶 )  ∈  𝐵 ) |