| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrring.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrring.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | psrass.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 5 |  | psrass.t | ⊢  ×   =  ( .r ‘ 𝑆 ) | 
						
							| 6 |  | psrass.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 7 |  | psrass.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | psrass.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | psrass.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 11 | 1 6 5 3 7 8 | psrmulcl | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑌 )  ∈  𝐵 ) | 
						
							| 12 | 1 6 5 3 11 9 | psrmulcl | ⊢ ( 𝜑  →  ( ( 𝑋  ×  𝑌 )  ×  𝑍 )  ∈  𝐵 ) | 
						
							| 13 | 1 10 4 6 12 | psrelbas | ⊢ ( 𝜑  →  ( ( 𝑋  ×  𝑌 )  ×  𝑍 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 14 | 13 | ffnd | ⊢ ( 𝜑  →  ( ( 𝑋  ×  𝑌 )  ×  𝑍 )  Fn  𝐷 ) | 
						
							| 15 | 1 6 5 3 8 9 | psrmulcl | ⊢ ( 𝜑  →  ( 𝑌  ×  𝑍 )  ∈  𝐵 ) | 
						
							| 16 | 1 6 5 3 7 15 | psrmulcl | ⊢ ( 𝜑  →  ( 𝑋  ×  ( 𝑌  ×  𝑍 ) )  ∈  𝐵 ) | 
						
							| 17 | 1 10 4 6 16 | psrelbas | ⊢ ( 𝜑  →  ( 𝑋  ×  ( 𝑌  ×  𝑍 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 17 | ffnd | ⊢ ( 𝜑  →  ( 𝑋  ×  ( 𝑌  ×  𝑍 ) )  Fn  𝐷 ) | 
						
							| 19 |  | eqid | ⊢ { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  =  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  𝐷 ) | 
						
							| 21 | 3 | ringcmnd | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑅  ∈  CMnd ) | 
						
							| 23 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 24 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  𝑅  ∈  Ring ) | 
						
							| 25 | 1 10 4 6 7 | psrelbas | ⊢ ( 𝜑  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ) | 
						
							| 28 |  | breq1 | ⊢ ( 𝑔  =  𝑗  →  ( 𝑔  ∘r   ≤  𝑥  ↔  𝑗  ∘r   ≤  𝑥 ) ) | 
						
							| 29 | 28 | elrab | ⊢ ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↔  ( 𝑗  ∈  𝐷  ∧  𝑗  ∘r   ≤  𝑥 ) ) | 
						
							| 30 | 27 29 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑗  ∈  𝐷  ∧  𝑗  ∘r   ≤  𝑥 ) ) | 
						
							| 31 | 30 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑗  ∈  𝐷 ) | 
						
							| 32 | 26 31 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑋 ‘ 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  ( 𝑋 ‘ 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 34 | 1 10 4 6 8 | psrelbas | ⊢ ( 𝜑  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 35 | 34 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } ) | 
						
							| 37 |  | breq1 | ⊢ ( ℎ  =  𝑛  →  ( ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 )  ↔  𝑛  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) ) ) | 
						
							| 38 | 37 | elrab | ⊢ ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↔  ( 𝑛  ∈  𝐷  ∧  𝑛  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) ) ) | 
						
							| 39 | 36 38 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  ( 𝑛  ∈  𝐷  ∧  𝑛  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) ) ) | 
						
							| 40 | 39 | simpld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  𝑛  ∈  𝐷 ) | 
						
							| 41 | 35 40 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  ( 𝑌 ‘ 𝑛 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 42 | 1 10 4 6 9 | psrelbas | ⊢ ( 𝜑  →  𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 43 | 42 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑥  ∈  𝐷 ) | 
						
							| 45 | 4 | psrbagf | ⊢ ( 𝑗  ∈  𝐷  →  𝑗 : 𝐼 ⟶ ℕ0 ) | 
						
							| 46 | 31 45 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑗 : 𝐼 ⟶ ℕ0 ) | 
						
							| 47 | 30 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑗  ∘r   ≤  𝑥 ) | 
						
							| 48 | 4 | psrbagcon | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑗 : 𝐼 ⟶ ℕ0  ∧  𝑗  ∘r   ≤  𝑥 )  →  ( ( 𝑥  ∘f   −  𝑗 )  ∈  𝐷  ∧  ( 𝑥  ∘f   −  𝑗 )  ∘r   ≤  𝑥 ) ) | 
						
							| 49 | 44 46 47 48 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑥  ∘f   −  𝑗 )  ∈  𝐷  ∧  ( 𝑥  ∘f   −  𝑗 )  ∘r   ≤  𝑥 ) ) | 
						
							| 50 | 49 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑥  ∘f   −  𝑗 )  ∈  𝐷 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  ( 𝑥  ∘f   −  𝑗 )  ∈  𝐷 ) | 
						
							| 52 | 4 | psrbagf | ⊢ ( 𝑛  ∈  𝐷  →  𝑛 : 𝐼 ⟶ ℕ0 ) | 
						
							| 53 | 40 52 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  𝑛 : 𝐼 ⟶ ℕ0 ) | 
						
							| 54 | 39 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  𝑛  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) ) | 
						
							| 55 | 4 | psrbagcon | ⊢ ( ( ( 𝑥  ∘f   −  𝑗 )  ∈  𝐷  ∧  𝑛 : 𝐼 ⟶ ℕ0  ∧  𝑛  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) )  →  ( ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 )  ∈  𝐷  ∧  ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 )  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) ) ) | 
						
							| 56 | 51 53 54 55 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  ( ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 )  ∈  𝐷  ∧  ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 )  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) ) ) | 
						
							| 57 | 56 | simpld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 )  ∈  𝐷 ) | 
						
							| 58 | 43 57 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 59 | 10 23 24 41 58 | ringcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 60 | 10 23 24 33 59 | ringcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } )  →  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 61 | 60 | anasss | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ∧  𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } ) )  →  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑘  ∘f   −  𝑗 )  →  ( 𝑌 ‘ 𝑛 )  =  ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) | 
						
							| 63 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑘  ∘f   −  𝑗 )  →  ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 )  =  ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( 𝑛  =  ( 𝑘  ∘f   −  𝑗 )  →  ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) )  =  ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) | 
						
							| 65 | 62 64 | oveq12d | ⊢ ( 𝑛  =  ( 𝑘  ∘f   −  𝑗 )  →  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) )  =  ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) | 
						
							| 66 | 65 | oveq2d | ⊢ ( 𝑛  =  ( 𝑘  ∘f   −  𝑗 )  →  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  =  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ) | 
						
							| 67 | 4 19 20 10 22 61 66 | psrass1lem | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑅  Σg  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑅  Σg  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) ) ) ) ) ) | 
						
							| 68 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑋  ∈  𝐵 ) | 
						
							| 69 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑌  ∈  𝐵 ) | 
						
							| 70 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } ) | 
						
							| 71 |  | breq1 | ⊢ ( 𝑔  =  𝑘  →  ( 𝑔  ∘r   ≤  𝑥  ↔  𝑘  ∘r   ≤  𝑥 ) ) | 
						
							| 72 | 71 | elrab | ⊢ ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↔  ( 𝑘  ∈  𝐷  ∧  𝑘  ∘r   ≤  𝑥 ) ) | 
						
							| 73 | 70 72 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑘  ∈  𝐷  ∧  𝑘  ∘r   ≤  𝑥 ) ) | 
						
							| 74 | 73 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑘  ∈  𝐷 ) | 
						
							| 75 | 1 6 23 5 4 68 69 74 | psrmulval | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑋  ×  𝑌 ) ‘ 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ) | 
						
							| 76 | 75 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( ( 𝑋  ×  𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) )  =  ( ( 𝑅  Σg  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) | 
						
							| 77 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 78 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑅  ∈  Ring ) | 
						
							| 79 | 4 | psrbaglefi | ⊢ ( 𝑘  ∈  𝐷  →  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ∈  Fin ) | 
						
							| 80 | 74 79 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ∈  Fin ) | 
						
							| 81 | 42 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 82 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑥  ∈  𝐷 ) | 
						
							| 83 | 4 | psrbagf | ⊢ ( 𝑘  ∈  𝐷  →  𝑘 : 𝐼 ⟶ ℕ0 ) | 
						
							| 84 | 74 83 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑘 : 𝐼 ⟶ ℕ0 ) | 
						
							| 85 | 73 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑘  ∘r   ≤  𝑥 ) | 
						
							| 86 | 4 | psrbagcon | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑘 : 𝐼 ⟶ ℕ0  ∧  𝑘  ∘r   ≤  𝑥 )  →  ( ( 𝑥  ∘f   −  𝑘 )  ∈  𝐷  ∧  ( 𝑥  ∘f   −  𝑘 )  ∘r   ≤  𝑥 ) ) | 
						
							| 87 | 82 84 85 86 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑥  ∘f   −  𝑘 )  ∈  𝐷  ∧  ( 𝑥  ∘f   −  𝑘 )  ∘r   ≤  𝑥 ) ) | 
						
							| 88 | 87 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑥  ∘f   −  𝑘 )  ∈  𝐷 ) | 
						
							| 89 | 81 88 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 90 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑅  ∈  Ring ) | 
						
							| 91 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 92 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } ) | 
						
							| 93 |  | breq1 | ⊢ ( ℎ  =  𝑗  →  ( ℎ  ∘r   ≤  𝑘  ↔  𝑗  ∘r   ≤  𝑘 ) ) | 
						
							| 94 | 93 | elrab | ⊢ ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↔  ( 𝑗  ∈  𝐷  ∧  𝑗  ∘r   ≤  𝑘 ) ) | 
						
							| 95 | 92 94 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( 𝑗  ∈  𝐷  ∧  𝑗  ∘r   ≤  𝑘 ) ) | 
						
							| 96 | 95 | simpld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑗  ∈  𝐷 ) | 
						
							| 97 | 91 96 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( 𝑋 ‘ 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 98 | 34 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 99 | 74 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑘  ∈  𝐷 ) | 
						
							| 100 | 96 45 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑗 : 𝐼 ⟶ ℕ0 ) | 
						
							| 101 | 95 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑗  ∘r   ≤  𝑘 ) | 
						
							| 102 | 4 | psrbagcon | ⊢ ( ( 𝑘  ∈  𝐷  ∧  𝑗 : 𝐼 ⟶ ℕ0  ∧  𝑗  ∘r   ≤  𝑘 )  →  ( ( 𝑘  ∘f   −  𝑗 )  ∈  𝐷  ∧  ( 𝑘  ∘f   −  𝑗 )  ∘r   ≤  𝑘 ) ) | 
						
							| 103 | 99 100 101 102 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( ( 𝑘  ∘f   −  𝑗 )  ∈  𝐷  ∧  ( 𝑘  ∘f   −  𝑗 )  ∘r   ≤  𝑘 ) ) | 
						
							| 104 | 103 | simpld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑗 )  ∈  𝐷 ) | 
						
							| 105 | 98 104 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 106 | 10 23 90 97 105 | ringcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 107 |  | eqid | ⊢ ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) )  =  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) ) | 
						
							| 108 |  | fvex | ⊢ ( 0g ‘ 𝑅 )  ∈  V | 
						
							| 109 | 108 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 110 | 107 80 106 109 | fsuppmptdm | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 111 | 10 77 23 78 80 89 106 110 | gsummulc1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑅  Σg  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) )  =  ( ( 𝑅  Σg  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) | 
						
							| 112 | 89 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 113 | 10 23 | ringass | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑋 ‘ 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) )  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) )  =  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) ) | 
						
							| 114 | 90 97 105 112 113 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) )  =  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) ) | 
						
							| 115 | 4 | psrbagf | ⊢ ( 𝑥  ∈  𝐷  →  𝑥 : 𝐼 ⟶ ℕ0 ) | 
						
							| 116 | 115 | ad3antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑥 : 𝐼 ⟶ ℕ0 ) | 
						
							| 117 | 116 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑥 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 118 | 84 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑘 : 𝐼 ⟶ ℕ0 ) | 
						
							| 119 | 118 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑘 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 120 | 100 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑗 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 121 |  | nn0cn | ⊢ ( ( 𝑥 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝑥 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 122 |  | nn0cn | ⊢ ( ( 𝑘 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝑘 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 123 |  | nn0cn | ⊢ ( ( 𝑗 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝑗 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 124 |  | nnncan2 | ⊢ ( ( ( 𝑥 ‘ 𝑧 )  ∈  ℂ  ∧  ( 𝑘 ‘ 𝑧 )  ∈  ℂ  ∧  ( 𝑗 ‘ 𝑧 )  ∈  ℂ )  →  ( ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  −  ( ( 𝑘 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) )  =  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑘 ‘ 𝑧 ) ) ) | 
						
							| 125 | 121 122 123 124 | syl3an | ⊢ ( ( ( 𝑥 ‘ 𝑧 )  ∈  ℕ0  ∧  ( 𝑘 ‘ 𝑧 )  ∈  ℕ0  ∧  ( 𝑗 ‘ 𝑧 )  ∈  ℕ0 )  →  ( ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  −  ( ( 𝑘 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) )  =  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑘 ‘ 𝑧 ) ) ) | 
						
							| 126 | 117 119 120 125 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  ∧  𝑧  ∈  𝐼 )  →  ( ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  −  ( ( 𝑘 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) )  =  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑘 ‘ 𝑧 ) ) ) | 
						
							| 127 | 126 | mpteq2dva | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( 𝑧  ∈  𝐼  ↦  ( ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  −  ( ( 𝑘 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) ) )  =  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑘 ‘ 𝑧 ) ) ) ) | 
						
							| 128 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝐼  ∈  𝑉 ) | 
						
							| 129 |  | ovexd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 130 |  | ovexd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝑘 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 131 | 116 | feqmptd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑥  =  ( 𝑧  ∈  𝐼  ↦  ( 𝑥 ‘ 𝑧 ) ) ) | 
						
							| 132 | 100 | feqmptd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑗  =  ( 𝑧  ∈  𝐼  ↦  ( 𝑗 ‘ 𝑧 ) ) ) | 
						
							| 133 | 128 117 120 131 132 | offval2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( 𝑥  ∘f   −  𝑗 )  =  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) ) ) | 
						
							| 134 | 118 | feqmptd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  𝑘  =  ( 𝑧  ∈  𝐼  ↦  ( 𝑘 ‘ 𝑧 ) ) ) | 
						
							| 135 | 128 119 120 134 132 | offval2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑗 )  =  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) ) ) | 
						
							| 136 | 128 129 130 133 135 | offval2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) )  =  ( 𝑧  ∈  𝐼  ↦  ( ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  −  ( ( 𝑘 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) ) ) ) | 
						
							| 137 | 128 117 119 131 134 | offval2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( 𝑥  ∘f   −  𝑘 )  =  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑥 ‘ 𝑧 )  −  ( 𝑘 ‘ 𝑧 ) ) ) ) | 
						
							| 138 | 127 136 137 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) )  =  ( 𝑥  ∘f   −  𝑘 ) ) | 
						
							| 139 | 138 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) )  =  ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) | 
						
							| 140 | 139 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) )  =  ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) | 
						
							| 141 | 140 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) )  =  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) ) | 
						
							| 142 | 114 141 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  ∧  𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 } )  →  ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) )  =  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ) | 
						
							| 143 | 142 | mpteq2dva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  =  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ) ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑅  Σg  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ) ) ) | 
						
							| 145 | 76 111 144 | 3eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( ( 𝑋  ×  𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ) ) ) | 
						
							| 146 | 145 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( ( 𝑋  ×  𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) )  =  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑅  Σg  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ) ) ) ) | 
						
							| 147 | 146 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( ( 𝑋  ×  𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑅  Σg  ( 𝑗  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  ( 𝑘  ∘f   −  𝑗 ) ) ) ) ) ) ) ) ) ) | 
						
							| 148 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑌  ∈  𝐵 ) | 
						
							| 149 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑍  ∈  𝐵 ) | 
						
							| 150 | 1 6 23 5 4 148 149 50 | psrmulval | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑌  ×  𝑍 ) ‘ ( 𝑥  ∘f   −  𝑗 ) )  =  ( 𝑅  Σg  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) ) ) | 
						
							| 151 | 150 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌  ×  𝑍 ) ‘ ( 𝑥  ∘f   −  𝑗 ) ) )  =  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑅  Σg  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) ) ) ) | 
						
							| 152 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  𝑅  ∈  Ring ) | 
						
							| 153 | 4 | psrbaglefi | ⊢ ( ( 𝑥  ∘f   −  𝑗 )  ∈  𝐷  →  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ∈  Fin ) | 
						
							| 154 | 50 153 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ∈  Fin ) | 
						
							| 155 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 156 | 4 155 | rab2ex | ⊢ { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ∈  V | 
						
							| 157 | 156 | mptex | ⊢ ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  ∈  V | 
						
							| 158 |  | funmpt | ⊢ Fun  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) | 
						
							| 159 | 157 158 108 | 3pm3.2i | ⊢ ( ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  ∈  V  ∧  Fun  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  ∧  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 160 | 159 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  ∈  V  ∧  Fun  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  ∧  ( 0g ‘ 𝑅 )  ∈  V ) ) | 
						
							| 161 |  | suppssdm | ⊢ ( ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  dom  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) | 
						
							| 162 |  | eqid | ⊢ ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  =  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) | 
						
							| 163 | 162 | dmmptss | ⊢ dom  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  ⊆  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } | 
						
							| 164 | 161 163 | sstri | ⊢ ( ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } | 
						
							| 165 | 164 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } ) | 
						
							| 166 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  ∈  V  ∧  Fun  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  ∧  ( 0g ‘ 𝑅 )  ∈  V )  ∧  ( { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ∈  Fin  ∧  ( ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) } ) )  →  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 167 | 160 154 165 166 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 168 | 10 77 23 152 154 32 59 167 | gsummulc2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( 𝑅  Σg  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) ) )  =  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑅  Σg  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) ) ) ) | 
						
							| 169 | 151 168 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 } )  →  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌  ×  𝑍 ) ‘ ( 𝑥  ∘f   −  𝑗 ) ) )  =  ( 𝑅  Σg  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) ) ) ) | 
						
							| 170 | 169 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌  ×  𝑍 ) ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) )  =  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑅  Σg  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) ) ) ) ) | 
						
							| 171 | 170 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌  ×  𝑍 ) ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( 𝑅  Σg  ( 𝑛  ∈  { ℎ  ∈  𝐷  ∣  ℎ  ∘r   ≤  ( 𝑥  ∘f   −  𝑗 ) }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌 ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( ( 𝑥  ∘f   −  𝑗 )  ∘f   −  𝑛 ) ) ) ) ) ) ) ) ) | 
						
							| 172 | 67 147 171 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( ( 𝑋  ×  𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌  ×  𝑍 ) ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) ) | 
						
							| 173 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑋  ×  𝑌 )  ∈  𝐵 ) | 
						
							| 174 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑍  ∈  𝐵 ) | 
						
							| 175 | 1 6 23 5 4 173 174 20 | psrmulval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( ( 𝑋  ×  𝑌 )  ×  𝑍 ) ‘ 𝑥 )  =  ( 𝑅  Σg  ( 𝑘  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( ( 𝑋  ×  𝑌 ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑍 ‘ ( 𝑥  ∘f   −  𝑘 ) ) ) ) ) ) | 
						
							| 176 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑋  ∈  𝐵 ) | 
						
							| 177 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑌  ×  𝑍 )  ∈  𝐵 ) | 
						
							| 178 | 1 6 23 5 4 176 177 20 | psrmulval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝑋  ×  ( 𝑌  ×  𝑍 ) ) ‘ 𝑥 )  =  ( 𝑅  Σg  ( 𝑗  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑥 }  ↦  ( ( 𝑋 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑌  ×  𝑍 ) ‘ ( 𝑥  ∘f   −  𝑗 ) ) ) ) ) ) | 
						
							| 179 | 172 175 178 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( ( 𝑋  ×  𝑌 )  ×  𝑍 ) ‘ 𝑥 )  =  ( ( 𝑋  ×  ( 𝑌  ×  𝑍 ) ) ‘ 𝑥 ) ) | 
						
							| 180 | 14 18 179 | eqfnfvd | ⊢ ( 𝜑  →  ( ( 𝑋  ×  𝑌 )  ×  𝑍 )  =  ( 𝑋  ×  ( 𝑌  ×  𝑍 ) ) ) |