Metamath Proof Explorer


Theorem psrass1

Description: Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015)

Ref Expression
Hypotheses psrring.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrring.i ( 𝜑𝐼𝑉 )
psrring.r ( 𝜑𝑅 ∈ Ring )
psrass.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
psrass.t × = ( .r𝑆 )
psrass.b 𝐵 = ( Base ‘ 𝑆 )
psrass.x ( 𝜑𝑋𝐵 )
psrass.y ( 𝜑𝑌𝐵 )
psrass.z ( 𝜑𝑍𝐵 )
Assertion psrass1 ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) = ( 𝑋 × ( 𝑌 × 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 psrring.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrring.i ( 𝜑𝐼𝑉 )
3 psrring.r ( 𝜑𝑅 ∈ Ring )
4 psrass.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
5 psrass.t × = ( .r𝑆 )
6 psrass.b 𝐵 = ( Base ‘ 𝑆 )
7 psrass.x ( 𝜑𝑋𝐵 )
8 psrass.y ( 𝜑𝑌𝐵 )
9 psrass.z ( 𝜑𝑍𝐵 )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 1 6 5 3 7 8 psrmulcl ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ 𝐵 )
12 1 6 5 3 11 9 psrmulcl ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) ∈ 𝐵 )
13 1 10 4 6 12 psrelbas ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
14 13 ffnd ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) Fn 𝐷 )
15 1 6 5 3 8 9 psrmulcl ( 𝜑 → ( 𝑌 × 𝑍 ) ∈ 𝐵 )
16 1 6 5 3 7 15 psrmulcl ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) ∈ 𝐵 )
17 1 10 4 6 16 psrelbas ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
18 17 ffnd ( 𝜑 → ( 𝑋 × ( 𝑌 × 𝑍 ) ) Fn 𝐷 )
19 eqid { 𝑔𝐷𝑔r𝑥 } = { 𝑔𝐷𝑔r𝑥 }
20 simpr ( ( 𝜑𝑥𝐷 ) → 𝑥𝐷 )
21 3 ringcmnd ( 𝜑𝑅 ∈ CMnd )
22 21 adantr ( ( 𝜑𝑥𝐷 ) → 𝑅 ∈ CMnd )
23 eqid ( .r𝑅 ) = ( .r𝑅 )
24 3 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑅 ∈ Ring )
25 1 10 4 6 7 psrelbas ( 𝜑𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
26 25 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
27 simpr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } )
28 breq1 ( 𝑔 = 𝑗 → ( 𝑔r𝑥𝑗r𝑥 ) )
29 28 elrab ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↔ ( 𝑗𝐷𝑗r𝑥 ) )
30 27 29 sylib ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑗𝐷𝑗r𝑥 ) )
31 30 simpld ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑗𝐷 )
32 26 31 ffvelcdmd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑋𝑗 ) ∈ ( Base ‘ 𝑅 ) )
33 32 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( 𝑋𝑗 ) ∈ ( Base ‘ 𝑅 ) )
34 1 10 4 6 8 psrelbas ( 𝜑𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
35 34 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
36 simpr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } )
37 breq1 ( = 𝑛 → ( r ≤ ( 𝑥f𝑗 ) ↔ 𝑛r ≤ ( 𝑥f𝑗 ) ) )
38 37 elrab ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↔ ( 𝑛𝐷𝑛r ≤ ( 𝑥f𝑗 ) ) )
39 36 38 sylib ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( 𝑛𝐷𝑛r ≤ ( 𝑥f𝑗 ) ) )
40 39 simpld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑛𝐷 )
41 35 40 ffvelcdmd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( 𝑌𝑛 ) ∈ ( Base ‘ 𝑅 ) )
42 1 10 4 6 9 psrelbas ( 𝜑𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
43 42 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
44 simplr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑥𝐷 )
45 4 psrbagf ( 𝑗𝐷𝑗 : 𝐼 ⟶ ℕ0 )
46 31 45 syl ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑗 : 𝐼 ⟶ ℕ0 )
47 30 simprd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑗r𝑥 )
48 4 psrbagcon ( ( 𝑥𝐷𝑗 : 𝐼 ⟶ ℕ0𝑗r𝑥 ) → ( ( 𝑥f𝑗 ) ∈ 𝐷 ∧ ( 𝑥f𝑗 ) ∘r𝑥 ) )
49 44 46 47 48 syl3anc ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑥f𝑗 ) ∈ 𝐷 ∧ ( 𝑥f𝑗 ) ∘r𝑥 ) )
50 49 simpld ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑥f𝑗 ) ∈ 𝐷 )
51 50 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( 𝑥f𝑗 ) ∈ 𝐷 )
52 4 psrbagf ( 𝑛𝐷𝑛 : 𝐼 ⟶ ℕ0 )
53 40 52 syl ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑛 : 𝐼 ⟶ ℕ0 )
54 39 simprd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → 𝑛r ≤ ( 𝑥f𝑗 ) )
55 4 psrbagcon ( ( ( 𝑥f𝑗 ) ∈ 𝐷𝑛 : 𝐼 ⟶ ℕ0𝑛r ≤ ( 𝑥f𝑗 ) ) → ( ( ( 𝑥f𝑗 ) ∘f𝑛 ) ∈ 𝐷 ∧ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ∘r ≤ ( 𝑥f𝑗 ) ) )
56 51 53 54 55 syl3anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( ( ( 𝑥f𝑗 ) ∘f𝑛 ) ∈ 𝐷 ∧ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ∘r ≤ ( 𝑥f𝑗 ) ) )
57 56 simpld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( ( 𝑥f𝑗 ) ∘f𝑛 ) ∈ 𝐷 )
58 43 57 ffvelcdmd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ∈ ( Base ‘ 𝑅 ) )
59 10 23 24 41 58 ringcld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ∈ ( Base ‘ 𝑅 ) )
60 10 23 24 33 59 ringcld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
61 60 anasss ( ( ( 𝜑𝑥𝐷 ) ∧ ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ∧ 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
62 fveq2 ( 𝑛 = ( 𝑘f𝑗 ) → ( 𝑌𝑛 ) = ( 𝑌 ‘ ( 𝑘f𝑗 ) ) )
63 oveq2 ( 𝑛 = ( 𝑘f𝑗 ) → ( ( 𝑥f𝑗 ) ∘f𝑛 ) = ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) )
64 63 fveq2d ( 𝑛 = ( 𝑘f𝑗 ) → ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) = ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) )
65 62 64 oveq12d ( 𝑛 = ( 𝑘f𝑗 ) → ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) = ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) )
66 65 oveq2d ( 𝑛 = ( 𝑘f𝑗 ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) )
67 4 19 20 10 22 61 66 psrass1lem ( ( 𝜑𝑥𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) ) ) )
68 7 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑋𝐵 )
69 8 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑌𝐵 )
70 simpr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } )
71 breq1 ( 𝑔 = 𝑘 → ( 𝑔r𝑥𝑘r𝑥 ) )
72 71 elrab ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↔ ( 𝑘𝐷𝑘r𝑥 ) )
73 70 72 sylib ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑘𝐷𝑘r𝑥 ) )
74 73 simpld ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑘𝐷 )
75 1 6 23 5 4 68 69 74 psrmulval ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ) ) )
76 75 oveq1d ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) = ( ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) )
77 eqid ( 0g𝑅 ) = ( 0g𝑅 )
78 3 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑅 ∈ Ring )
79 4 psrbaglefi ( 𝑘𝐷 → { 𝐷r𝑘 } ∈ Fin )
80 74 79 syl ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → { 𝐷r𝑘 } ∈ Fin )
81 42 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑍 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
82 simplr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑥𝐷 )
83 4 psrbagf ( 𝑘𝐷𝑘 : 𝐼 ⟶ ℕ0 )
84 74 83 syl ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑘 : 𝐼 ⟶ ℕ0 )
85 73 simprd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑘r𝑥 )
86 4 psrbagcon ( ( 𝑥𝐷𝑘 : 𝐼 ⟶ ℕ0𝑘r𝑥 ) → ( ( 𝑥f𝑘 ) ∈ 𝐷 ∧ ( 𝑥f𝑘 ) ∘r𝑥 ) )
87 82 84 85 86 syl3anc ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑥f𝑘 ) ∈ 𝐷 ∧ ( 𝑥f𝑘 ) ∘r𝑥 ) )
88 87 simpld ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑥f𝑘 ) ∈ 𝐷 )
89 81 88 ffvelcdmd ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ∈ ( Base ‘ 𝑅 ) )
90 3 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑅 ∈ Ring )
91 25 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
92 simpr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑗 ∈ { 𝐷r𝑘 } )
93 breq1 ( = 𝑗 → ( r𝑘𝑗r𝑘 ) )
94 93 elrab ( 𝑗 ∈ { 𝐷r𝑘 } ↔ ( 𝑗𝐷𝑗r𝑘 ) )
95 92 94 sylib ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑗𝐷𝑗r𝑘 ) )
96 95 simpld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑗𝐷 )
97 91 96 ffvelcdmd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑋𝑗 ) ∈ ( Base ‘ 𝑅 ) )
98 34 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
99 74 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑘𝐷 )
100 96 45 syl ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑗 : 𝐼 ⟶ ℕ0 )
101 95 simprd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑗r𝑘 )
102 4 psrbagcon ( ( 𝑘𝐷𝑗 : 𝐼 ⟶ ℕ0𝑗r𝑘 ) → ( ( 𝑘f𝑗 ) ∈ 𝐷 ∧ ( 𝑘f𝑗 ) ∘r𝑘 ) )
103 99 100 101 102 syl3anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑘f𝑗 ) ∈ 𝐷 ∧ ( 𝑘f𝑗 ) ∘r𝑘 ) )
104 103 simpld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑘f𝑗 ) ∈ 𝐷 )
105 98 104 ffvelcdmd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ∈ ( Base ‘ 𝑅 ) )
106 10 23 90 97 105 ringcld ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) )
107 eqid ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ) = ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) )
108 fvex ( 0g𝑅 ) ∈ V
109 108 a1i ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 0g𝑅 ) ∈ V )
110 107 80 106 109 fsuppmptdm ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ) finSupp ( 0g𝑅 ) )
111 10 77 23 78 80 89 106 110 gsummulc1 ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) )
112 89 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ∈ ( Base ‘ 𝑅 ) )
113 10 23 ringass ( ( 𝑅 ∈ Ring ∧ ( ( 𝑋𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) )
114 90 97 105 112 113 syl13anc ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) )
115 4 psrbagf ( 𝑥𝐷𝑥 : 𝐼 ⟶ ℕ0 )
116 115 ad3antlr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
117 116 ffvelcdmda ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( 𝑥𝑧 ) ∈ ℕ0 )
118 84 adantr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑘 : 𝐼 ⟶ ℕ0 )
119 118 ffvelcdmda ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( 𝑘𝑧 ) ∈ ℕ0 )
120 100 ffvelcdmda ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( 𝑗𝑧 ) ∈ ℕ0 )
121 nn0cn ( ( 𝑥𝑧 ) ∈ ℕ0 → ( 𝑥𝑧 ) ∈ ℂ )
122 nn0cn ( ( 𝑘𝑧 ) ∈ ℕ0 → ( 𝑘𝑧 ) ∈ ℂ )
123 nn0cn ( ( 𝑗𝑧 ) ∈ ℕ0 → ( 𝑗𝑧 ) ∈ ℂ )
124 nnncan2 ( ( ( 𝑥𝑧 ) ∈ ℂ ∧ ( 𝑘𝑧 ) ∈ ℂ ∧ ( 𝑗𝑧 ) ∈ ℂ ) → ( ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) − ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) = ( ( 𝑥𝑧 ) − ( 𝑘𝑧 ) ) )
125 121 122 123 124 syl3an ( ( ( 𝑥𝑧 ) ∈ ℕ0 ∧ ( 𝑘𝑧 ) ∈ ℕ0 ∧ ( 𝑗𝑧 ) ∈ ℕ0 ) → ( ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) − ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) = ( ( 𝑥𝑧 ) − ( 𝑘𝑧 ) ) )
126 117 119 120 125 syl3anc ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) − ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) = ( ( 𝑥𝑧 ) − ( 𝑘𝑧 ) ) )
127 126 mpteq2dva ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑧𝐼 ↦ ( ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) − ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) ) = ( 𝑧𝐼 ↦ ( ( 𝑥𝑧 ) − ( 𝑘𝑧 ) ) ) )
128 2 ad3antrrr ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝐼𝑉 )
129 ovexd ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) ∈ V )
130 ovexd ( ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) ∧ 𝑧𝐼 ) → ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ∈ V )
131 116 feqmptd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑥 = ( 𝑧𝐼 ↦ ( 𝑥𝑧 ) ) )
132 100 feqmptd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑗 = ( 𝑧𝐼 ↦ ( 𝑗𝑧 ) ) )
133 128 117 120 131 132 offval2 ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑥f𝑗 ) = ( 𝑧𝐼 ↦ ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) ) )
134 118 feqmptd ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → 𝑘 = ( 𝑧𝐼 ↦ ( 𝑘𝑧 ) ) )
135 128 119 120 134 132 offval2 ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑘f𝑗 ) = ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) )
136 128 129 130 133 135 offval2 ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) = ( 𝑧𝐼 ↦ ( ( ( 𝑥𝑧 ) − ( 𝑗𝑧 ) ) − ( ( 𝑘𝑧 ) − ( 𝑗𝑧 ) ) ) ) )
137 128 117 119 131 134 offval2 ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑥f𝑘 ) = ( 𝑧𝐼 ↦ ( ( 𝑥𝑧 ) − ( 𝑘𝑧 ) ) ) )
138 127 136 137 3eqtr4d ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) = ( 𝑥f𝑘 ) )
139 138 fveq2d ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) = ( 𝑍 ‘ ( 𝑥f𝑘 ) ) )
140 139 oveq2d ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) = ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) )
141 140 oveq2d ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) )
142 114 141 eqtr4d ( ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) ∧ 𝑗 ∈ { 𝐷r𝑘 } ) → ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) )
143 142 mpteq2dva ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) = ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) )
144 143 oveq2d ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) ) )
145 76 111 144 3eqtr2d ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) ) )
146 145 mpteq2dva ( ( 𝜑𝑥𝐷 ) → ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) = ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) ) ) )
147 146 oveq2d ( ( 𝜑𝑥𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝐷r𝑘 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 ‘ ( 𝑘f𝑗 ) ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f − ( 𝑘f𝑗 ) ) ) ) ) ) ) ) ) )
148 8 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑌𝐵 )
149 9 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑍𝐵 )
150 1 6 23 5 4 148 149 50 psrmulval ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) = ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) )
151 150 oveq2d ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) )
152 3 ad2antrr ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → 𝑅 ∈ Ring )
153 4 psrbaglefi ( ( 𝑥f𝑗 ) ∈ 𝐷 → { 𝐷r ≤ ( 𝑥f𝑗 ) } ∈ Fin )
154 50 153 syl ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → { 𝐷r ≤ ( 𝑥f𝑗 ) } ∈ Fin )
155 ovex ( ℕ0m 𝐼 ) ∈ V
156 4 155 rab2ex { 𝐷r ≤ ( 𝑥f𝑗 ) } ∈ V
157 156 mptex ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ V
158 funmpt Fun ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) )
159 157 158 108 3pm3.2i ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∧ ( 0g𝑅 ) ∈ V )
160 159 a1i ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∧ ( 0g𝑅 ) ∈ V ) )
161 suppssdm ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ dom ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) )
162 eqid ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) = ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) )
163 162 dmmptss dom ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ⊆ { 𝐷r ≤ ( 𝑥f𝑗 ) }
164 161 163 sstri ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝐷r ≤ ( 𝑥f𝑗 ) }
165 164 a1i ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝐷r ≤ ( 𝑥f𝑗 ) } )
166 suppssfifsupp ( ( ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ∧ ( 0g𝑅 ) ∈ V ) ∧ ( { 𝐷r ≤ ( 𝑥f𝑗 ) } ∈ Fin ∧ ( ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) supp ( 0g𝑅 ) ) ⊆ { 𝐷r ≤ ( 𝑥f𝑗 ) } ) ) → ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) finSupp ( 0g𝑅 ) )
167 160 154 165 166 syl12anc ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) finSupp ( 0g𝑅 ) )
168 10 77 23 152 154 32 59 167 gsummulc2 ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) = ( ( 𝑋𝑗 ) ( .r𝑅 ) ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) )
169 151 168 eqtr4d ( ( ( 𝜑𝑥𝐷 ) ∧ 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ) → ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) = ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) )
170 169 mpteq2dva ( ( 𝜑𝑥𝐷 ) → ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) ) = ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) ) )
171 170 oveq2d ( ( 𝜑𝑥𝐷 ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( 𝑅 Σg ( 𝑛 ∈ { 𝐷r ≤ ( 𝑥f𝑗 ) } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌𝑛 ) ( .r𝑅 ) ( 𝑍 ‘ ( ( 𝑥f𝑗 ) ∘f𝑛 ) ) ) ) ) ) ) ) )
172 67 147 171 3eqtr4d ( ( 𝜑𝑥𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) ) ) )
173 11 adantr ( ( 𝜑𝑥𝐷 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 )
174 9 adantr ( ( 𝜑𝑥𝐷 ) → 𝑍𝐵 )
175 1 6 23 5 4 173 174 20 psrmulval ( ( 𝜑𝑥𝐷 ) → ( ( ( 𝑋 × 𝑌 ) × 𝑍 ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( ( 𝑋 × 𝑌 ) ‘ 𝑘 ) ( .r𝑅 ) ( 𝑍 ‘ ( 𝑥f𝑘 ) ) ) ) ) )
176 7 adantr ( ( 𝜑𝑥𝐷 ) → 𝑋𝐵 )
177 15 adantr ( ( 𝜑𝑥𝐷 ) → ( 𝑌 × 𝑍 ) ∈ 𝐵 )
178 1 6 23 5 4 176 177 20 psrmulval ( ( 𝜑𝑥𝐷 ) → ( ( 𝑋 × ( 𝑌 × 𝑍 ) ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔𝐷𝑔r𝑥 } ↦ ( ( 𝑋𝑗 ) ( .r𝑅 ) ( ( 𝑌 × 𝑍 ) ‘ ( 𝑥f𝑗 ) ) ) ) ) )
179 172 175 178 3eqtr4d ( ( 𝜑𝑥𝐷 ) → ( ( ( 𝑋 × 𝑌 ) × 𝑍 ) ‘ 𝑥 ) = ( ( 𝑋 × ( 𝑌 × 𝑍 ) ) ‘ 𝑥 ) )
180 14 18 179 eqfnfvd ( 𝜑 → ( ( 𝑋 × 𝑌 ) × 𝑍 ) = ( 𝑋 × ( 𝑌 × 𝑍 ) ) )