| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumbagdiag.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | gsumbagdiag.s | ⊢ 𝑆  =  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝐹 } | 
						
							| 3 |  | gsumbagdiag.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 4 |  | gsumbagdiag.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 5 |  | gsumbagdiag.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 6 |  | gsumbagdiag.x | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | psrass1lem.y | ⊢ ( 𝑘  =  ( 𝑛  ∘f   −  𝑗 )  →  𝑋  =  𝑌 ) | 
						
							| 8 | 1 2 3 | gsumbagdiaglem | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ) )  →  ( 𝑗  ∈  𝑆  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) ) | 
						
							| 9 | 6 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 | 9 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ⟶ 𝐵 ) | 
						
							| 11 | 2 | ssrab3 | ⊢ 𝑆  ⊆  𝐷 | 
						
							| 12 | 1 2 | psrbagconcl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑗  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑗 )  ∈  𝑆 ) | 
						
							| 13 | 3 12 | sylan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑗 )  ∈  𝑆 ) | 
						
							| 14 | 11 13 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑗 )  ∈  𝐷 ) | 
						
							| 15 |  | eqid | ⊢ { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  =  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } | 
						
							| 16 | 1 15 | psrbagconf1o | ⊢ ( ( 𝐹  ∘f   −  𝑗 )  ∈  𝐷  →  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } –1-1-onto→ { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) | 
						
							| 17 | 14 16 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } –1-1-onto→ { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) | 
						
							| 18 |  | f1of | ⊢ ( ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } –1-1-onto→ { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  →  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ⟶ { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ⟶ { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) | 
						
							| 20 | 10 19 | fcod | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  ∘  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) ) ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ⟶ 𝐵 ) | 
						
							| 21 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  𝐹  ∈  𝐷 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝐹  ∈  𝐷 ) | 
						
							| 23 | 1 | psrbagf | ⊢ ( 𝐹  ∈  𝐷  →  𝐹 : 𝐼 ⟶ ℕ0 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝐹 : 𝐼 ⟶ ℕ0 ) | 
						
							| 25 | 24 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 26 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝑗  ∈  𝑆 ) | 
						
							| 27 | 11 26 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝑗  ∈  𝐷 ) | 
						
							| 28 | 1 | psrbagf | ⊢ ( 𝑗  ∈  𝐷  →  𝑗 : 𝐼 ⟶ ℕ0 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝑗 : 𝐼 ⟶ ℕ0 ) | 
						
							| 30 | 29 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑗 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 31 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ⊆  𝐷 | 
						
							| 32 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) | 
						
							| 33 | 31 32 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝑚  ∈  𝐷 ) | 
						
							| 34 | 1 | psrbagf | ⊢ ( 𝑚  ∈  𝐷  →  𝑚 : 𝐼 ⟶ ℕ0 ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝑚 : 𝐼 ⟶ ℕ0 ) | 
						
							| 36 | 35 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑚 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 37 |  | nn0cn | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 38 |  | nn0cn | ⊢ ( ( 𝑗 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝑗 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 39 |  | nn0cn | ⊢ ( ( 𝑚 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝑚 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 40 |  | sub32 | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  ∈  ℂ  ∧  ( 𝑗 ‘ 𝑧 )  ∈  ℂ  ∧  ( 𝑚 ‘ 𝑧 )  ∈  ℂ )  →  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  −  ( 𝑚 ‘ 𝑧 ) )  =  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑚 ‘ 𝑧 ) )  −  ( 𝑗 ‘ 𝑧 ) ) ) | 
						
							| 41 | 37 38 39 40 | syl3an | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  ∈  ℕ0  ∧  ( 𝑗 ‘ 𝑧 )  ∈  ℕ0  ∧  ( 𝑚 ‘ 𝑧 )  ∈  ℕ0 )  →  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  −  ( 𝑚 ‘ 𝑧 ) )  =  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑚 ‘ 𝑧 ) )  −  ( 𝑗 ‘ 𝑧 ) ) ) | 
						
							| 42 | 25 30 36 41 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  ∧  𝑧  ∈  𝐼 )  →  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  −  ( 𝑚 ‘ 𝑧 ) )  =  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑚 ‘ 𝑧 ) )  −  ( 𝑗 ‘ 𝑧 ) ) ) | 
						
							| 43 | 42 | mpteq2dva | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  ( 𝑧  ∈  𝐼  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  −  ( 𝑚 ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  𝐼  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑚 ‘ 𝑧 ) )  −  ( 𝑗 ‘ 𝑧 ) ) ) ) | 
						
							| 44 | 35 | ffnd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝑚  Fn  𝐼 ) | 
						
							| 45 | 32 44 | fndmexd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝐼  ∈  V ) | 
						
							| 46 |  | ovexd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 47 | 24 | feqmptd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝐹  =  ( 𝑧  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 48 | 29 | feqmptd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝑗  =  ( 𝑧  ∈  𝐼  ↦  ( 𝑗 ‘ 𝑧 ) ) ) | 
						
							| 49 | 45 25 30 47 48 | offval2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  ( 𝐹  ∘f   −  𝑗 )  =  ( 𝑧  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) ) ) ) | 
						
							| 50 | 35 | feqmptd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  𝑚  =  ( 𝑧  ∈  𝐼  ↦  ( 𝑚 ‘ 𝑧 ) ) ) | 
						
							| 51 | 45 46 36 49 50 | offval2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 )  =  ( 𝑧  ∈  𝐼  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑗 ‘ 𝑧 ) )  −  ( 𝑚 ‘ 𝑧 ) ) ) ) | 
						
							| 52 |  | ovexd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑚 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 53 | 45 25 36 47 50 | offval2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  ( 𝐹  ∘f   −  𝑚 )  =  ( 𝑧  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑚 ‘ 𝑧 ) ) ) ) | 
						
							| 54 | 45 52 30 53 48 | offval2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  =  ( 𝑧  ∈  𝐼  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑚 ‘ 𝑧 ) )  −  ( 𝑗 ‘ 𝑧 ) ) ) ) | 
						
							| 55 | 43 51 54 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 )  =  ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 ) ) | 
						
							| 56 | 1 15 | psrbagconcl | ⊢ ( ( ( 𝐹  ∘f   −  𝑗 )  ∈  𝐷  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 )  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) | 
						
							| 57 | 14 56 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 )  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) | 
						
							| 58 | 55 57 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) | 
						
							| 59 | 55 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) )  =  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 ) ) ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑛 𝑋 | 
						
							| 61 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛  /  𝑘 ⦌ 𝑋 | 
						
							| 62 |  | csbeq1a | ⊢ ( 𝑘  =  𝑛  →  𝑋  =  ⦋ 𝑛  /  𝑘 ⦌ 𝑋 ) | 
						
							| 63 | 60 61 62 | cbvmpt | ⊢ ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  =  ( 𝑛  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ 𝑛  /  𝑘 ⦌ 𝑋 ) | 
						
							| 64 | 63 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  =  ( 𝑛  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ 𝑛  /  𝑘 ⦌ 𝑋 ) ) | 
						
							| 65 |  | csbeq1 | ⊢ ( 𝑛  =  ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  →  ⦋ 𝑛  /  𝑘 ⦌ 𝑋  =  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) | 
						
							| 66 | 58 59 64 65 | fmptco | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  ∘  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) ) )  =  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) | 
						
							| 67 | 66 | feq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( ( ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  ∘  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) ) ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ⟶ 𝐵  ↔  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ⟶ 𝐵 ) ) | 
						
							| 68 | 20 67 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ⟶ 𝐵 ) | 
						
							| 69 | 68 | fvmptelcdm | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  →  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋  ∈  𝐵 ) | 
						
							| 70 | 69 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋  ∈  𝐵 ) | 
						
							| 71 | 8 70 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ) )  →  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋  ∈  𝐵 ) | 
						
							| 72 | 1 2 3 4 5 71 | gsumbagdiag | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑚  ∈  𝑆 ,  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) )  =  ( 𝐺  Σg  ( 𝑗  ∈  𝑆 ,  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) | 
						
							| 73 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 74 | 1 | psrbaglefi | ⊢ ( 𝐹  ∈  𝐷  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝐹 }  ∈  Fin ) | 
						
							| 75 | 3 74 | syl | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝐹 }  ∈  Fin ) | 
						
							| 76 | 2 75 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  Fin ) | 
						
							| 77 | 1 2 | psrbagconcl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑚  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑚 )  ∈  𝑆 ) | 
						
							| 78 | 3 77 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑚 )  ∈  𝑆 ) | 
						
							| 79 | 11 78 | sselid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑚 )  ∈  𝐷 ) | 
						
							| 80 | 1 | psrbaglefi | ⊢ ( ( 𝐹  ∘f   −  𝑚 )  ∈  𝐷  →  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ∈  Fin ) | 
						
							| 81 | 79 80 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ∈  Fin ) | 
						
							| 82 |  | xpfi | ⊢ ( ( 𝑆  ∈  Fin  ∧  𝑆  ∈  Fin )  →  ( 𝑆  ×  𝑆 )  ∈  Fin ) | 
						
							| 83 | 76 76 82 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  ×  𝑆 )  ∈  Fin ) | 
						
							| 84 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ) )  →  𝑚  ∈  𝑆 ) | 
						
							| 85 | 8 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ) )  →  𝑗  ∈  𝑆 ) | 
						
							| 86 |  | brxp | ⊢ ( 𝑚 ( 𝑆  ×  𝑆 ) 𝑗  ↔  ( 𝑚  ∈  𝑆  ∧  𝑗  ∈  𝑆 ) ) | 
						
							| 87 | 84 85 86 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ) )  →  𝑚 ( 𝑆  ×  𝑆 ) 𝑗 ) | 
						
							| 88 | 87 | pm2.24d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ) )  →  ( ¬  𝑚 ( 𝑆  ×  𝑆 ) 𝑗  →  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 89 | 88 | impr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } )  ∧  ¬  𝑚 ( 𝑆  ×  𝑆 ) 𝑗 ) )  →  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 90 | 4 73 5 76 81 71 83 89 | gsum2d2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑚  ∈  𝑆 ,  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) )  =  ( 𝐺  Σg  ( 𝑚  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) ) ) | 
						
							| 91 | 1 | psrbaglefi | ⊢ ( ( 𝐹  ∘f   −  𝑗 )  ∈  𝐷  →  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ∈  Fin ) | 
						
							| 92 | 14 91 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ∈  Fin ) | 
						
							| 93 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  𝑗  ∈  𝑆 ) | 
						
							| 94 | 1 2 3 | gsumbagdiaglem | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  ( 𝑚  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ) ) | 
						
							| 95 | 94 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  𝑚  ∈  𝑆 ) | 
						
							| 96 |  | brxp | ⊢ ( 𝑗 ( 𝑆  ×  𝑆 ) 𝑚  ↔  ( 𝑗  ∈  𝑆  ∧  𝑚  ∈  𝑆 ) ) | 
						
							| 97 | 93 95 96 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  𝑗 ( 𝑆  ×  𝑆 ) 𝑚 ) | 
						
							| 98 | 97 | pm2.24d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  ( ¬  𝑗 ( 𝑆  ×  𝑆 ) 𝑚  →  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 99 | 98 | impr | ⊢ ( ( 𝜑  ∧  ( ( 𝑗  ∈  𝑆  ∧  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  ∧  ¬  𝑗 ( 𝑆  ×  𝑆 ) 𝑚 ) )  →  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 100 | 4 73 5 76 92 70 83 99 | gsum2d2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑗  ∈  𝑆 ,  𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) )  =  ( 𝐺  Σg  ( 𝑗  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) ) ) | 
						
							| 101 | 72 90 100 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑚  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) )  =  ( 𝐺  Σg  ( 𝑗  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) ) ) | 
						
							| 102 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  𝐺  ∈  CMnd ) | 
						
							| 103 | 71 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } )  →  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋  ∈  𝐵 ) | 
						
							| 104 | 103 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) : { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ⟶ 𝐵 ) | 
						
							| 105 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 106 | 1 105 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 107 | 106 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  𝐷  ∈  V ) | 
						
							| 108 |  | rabexg | ⊢ ( 𝐷  ∈  V  →  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ∈  V ) | 
						
							| 109 |  | mptexg | ⊢ ( { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ∈  V  →  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  ∈  V ) | 
						
							| 110 | 107 108 109 | 3syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  ∈  V ) | 
						
							| 111 |  | funmpt | ⊢ Fun  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) | 
						
							| 112 | 111 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  Fun  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) | 
						
							| 113 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  ( 0g ‘ 𝐺 )  ∈  V ) | 
						
							| 114 |  | suppssdm | ⊢ ( ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  supp  ( 0g ‘ 𝐺 ) )  ⊆  dom  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) | 
						
							| 115 |  | eqid | ⊢ ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  =  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) | 
						
							| 116 | 115 | dmmptss | ⊢ dom  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  ⊆  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } | 
						
							| 117 | 114 116 | sstri | ⊢ ( ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  supp  ( 0g ‘ 𝐺 ) )  ⊆  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } | 
						
							| 118 | 117 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  ( ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  supp  ( 0g ‘ 𝐺 ) )  ⊆  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ) | 
						
							| 119 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  ∈  V  ∧  Fun  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  ∧  ( 0g ‘ 𝐺 )  ∈  V )  ∧  ( { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ∈  Fin  ∧  ( ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  supp  ( 0g ‘ 𝐺 ) )  ⊆  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ) )  →  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 120 | 110 112 113 81 118 119 | syl32anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 )  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 121 | 4 73 102 81 104 120 | gsumcl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑆 )  →  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) )  ∈  𝐵 ) | 
						
							| 122 | 121 | fmpttd | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) : 𝑆 ⟶ 𝐵 ) | 
						
							| 123 | 1 2 | psrbagconf1o | ⊢ ( 𝐹  ∈  𝐷  →  ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 ) | 
						
							| 124 | 3 123 | syl | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 ) | 
						
							| 125 |  | f1ocnv | ⊢ ( ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆  →  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 ) | 
						
							| 126 |  | f1of | ⊢ ( ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆  →  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) : 𝑆 ⟶ 𝑆 ) | 
						
							| 127 | 124 125 126 | 3syl | ⊢ ( 𝜑  →  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) : 𝑆 ⟶ 𝑆 ) | 
						
							| 128 | 122 127 | fcod | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) ) : 𝑆 ⟶ 𝐵 ) | 
						
							| 129 |  | coass | ⊢ ( ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) )  =  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  ( ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) ) ) | 
						
							| 130 |  | f1ococnv2 | ⊢ ( ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆  →  ( ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) )  =  (  I   ↾  𝑆 ) ) | 
						
							| 131 | 124 130 | syl | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) )  =  (  I   ↾  𝑆 ) ) | 
						
							| 132 | 131 | coeq2d | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  ( ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) ) )  =  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  (  I   ↾  𝑆 ) ) ) | 
						
							| 133 | 129 132 | eqtrid | ⊢ ( 𝜑  →  ( ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) )  =  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  (  I   ↾  𝑆 ) ) ) | 
						
							| 134 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) )  =  ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) ) | 
						
							| 135 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  =  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) ) | 
						
							| 136 |  | breq2 | ⊢ ( 𝑛  =  ( 𝐹  ∘f   −  𝑚 )  →  ( 𝑥  ∘r   ≤  𝑛  ↔  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) ) ) | 
						
							| 137 | 136 | rabbidv | ⊢ ( 𝑛  =  ( 𝐹  ∘f   −  𝑚 )  →  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  =  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) } ) | 
						
							| 138 |  | ovex | ⊢ ( 𝑛  ∘f   −  𝑗 )  ∈  V | 
						
							| 139 | 138 7 | csbie | ⊢ ⦋ ( 𝑛  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋  =  𝑌 | 
						
							| 140 |  | oveq1 | ⊢ ( 𝑛  =  ( 𝐹  ∘f   −  𝑚 )  →  ( 𝑛  ∘f   −  𝑗 )  =  ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 ) ) | 
						
							| 141 | 140 | csbeq1d | ⊢ ( 𝑛  =  ( 𝐹  ∘f   −  𝑚 )  →  ⦋ ( 𝑛  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋  =  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) | 
						
							| 142 | 139 141 | eqtr3id | ⊢ ( 𝑛  =  ( 𝐹  ∘f   −  𝑚 )  →  𝑌  =  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) | 
						
							| 143 | 137 142 | mpteq12dv | ⊢ ( 𝑛  =  ( 𝐹  ∘f   −  𝑚 )  →  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 )  =  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( 𝑛  =  ( 𝐹  ∘f   −  𝑚 )  →  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) )  =  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) | 
						
							| 145 | 78 134 135 144 | fmptco | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) )  =  ( 𝑚  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) ) | 
						
							| 146 | 145 | coeq1d | ⊢ ( 𝜑  →  ( ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) )  =  ( ( 𝑚  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) ) ) | 
						
							| 147 |  | coires1 | ⊢ ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  (  I   ↾  𝑆 ) )  =  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ↾  𝑆 ) | 
						
							| 148 |  | ssid | ⊢ 𝑆  ⊆  𝑆 | 
						
							| 149 |  | resmpt | ⊢ ( 𝑆  ⊆  𝑆  →  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ↾  𝑆 )  =  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) ) | 
						
							| 150 | 148 149 | ax-mp | ⊢ ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ↾  𝑆 )  =  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) | 
						
							| 151 | 147 150 | eqtri | ⊢ ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  (  I   ↾  𝑆 ) )  =  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) | 
						
							| 152 | 151 | a1i | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  (  I   ↾  𝑆 ) )  =  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) ) | 
						
							| 153 | 133 146 152 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) )  =  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) ) | 
						
							| 154 | 153 | feq1d | ⊢ ( 𝜑  →  ( ( ( 𝑚  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) )  ∘  ◡ ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) ) : 𝑆 ⟶ 𝐵  ↔  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) : 𝑆 ⟶ 𝐵 ) ) | 
						
							| 155 | 128 154 | mpbid | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) : 𝑆 ⟶ 𝐵 ) | 
						
							| 156 |  | rabexg | ⊢ ( 𝐷  ∈  V  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝐹 }  ∈  V ) | 
						
							| 157 | 106 156 | mp1i | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝐹 }  ∈  V ) | 
						
							| 158 | 2 157 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 159 | 158 | mptexd | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∈  V ) | 
						
							| 160 |  | funmpt | ⊢ Fun  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) | 
						
							| 161 | 160 | a1i | ⊢ ( 𝜑  →  Fun  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) ) | 
						
							| 162 |  | fvexd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  V ) | 
						
							| 163 |  | suppssdm | ⊢ ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  supp  ( 0g ‘ 𝐺 ) )  ⊆  dom  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) | 
						
							| 164 |  | eqid | ⊢ ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  =  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) | 
						
							| 165 | 164 | dmmptss | ⊢ dom  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ⊆  𝑆 | 
						
							| 166 | 163 165 | sstri | ⊢ ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  supp  ( 0g ‘ 𝐺 ) )  ⊆  𝑆 | 
						
							| 167 | 166 | a1i | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  supp  ( 0g ‘ 𝐺 ) )  ⊆  𝑆 ) | 
						
							| 168 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∈  V  ∧  Fun  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∧  ( 0g ‘ 𝐺 )  ∈  V )  ∧  ( 𝑆  ∈  Fin  ∧  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  supp  ( 0g ‘ 𝐺 ) )  ⊆  𝑆 ) )  →  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 169 | 159 161 162 76 167 168 | syl32anc | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 170 | 4 73 5 76 155 169 124 | gsumf1o | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) )  =  ( 𝐺  Σg  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) ) ) ) | 
						
							| 171 | 145 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) )  ∘  ( 𝑚  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑚 ) ) ) )  =  ( 𝐺  Σg  ( 𝑚  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) ) ) | 
						
							| 172 | 170 171 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) )  =  ( 𝐺  Σg  ( 𝑚  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑚 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) ) ) | 
						
							| 173 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  𝐺  ∈  CMnd ) | 
						
							| 174 | 106 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  𝐷  ∈  V ) | 
						
							| 175 |  | rabexg | ⊢ ( 𝐷  ∈  V  →  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ∈  V ) | 
						
							| 176 |  | mptexg | ⊢ ( { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ∈  V  →  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  ∈  V ) | 
						
							| 177 | 174 175 176 | 3syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  ∈  V ) | 
						
							| 178 |  | funmpt | ⊢ Fun  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) | 
						
							| 179 | 178 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  Fun  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) ) | 
						
							| 180 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 0g ‘ 𝐺 )  ∈  V ) | 
						
							| 181 |  | suppssdm | ⊢ ( ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  supp  ( 0g ‘ 𝐺 ) )  ⊆  dom  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) | 
						
							| 182 |  | eqid | ⊢ ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  =  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) | 
						
							| 183 | 182 | dmmptss | ⊢ dom  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  ⊆  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } | 
						
							| 184 | 181 183 | sstri | ⊢ ( ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  supp  ( 0g ‘ 𝐺 ) )  ⊆  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } | 
						
							| 185 | 184 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  supp  ( 0g ‘ 𝐺 ) )  ⊆  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) | 
						
							| 186 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  ∈  V  ∧  Fun  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  ∧  ( 0g ‘ 𝐺 )  ∈  V )  ∧  ( { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ∈  Fin  ∧  ( ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  supp  ( 0g ‘ 𝐺 ) )  ⊆  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 187 | 177 179 180 92 185 186 | syl32anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 188 | 4 73 173 92 10 187 17 | gsumf1o | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) )  =  ( 𝐺  Σg  ( ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  ∘  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) ) ) ) ) | 
						
							| 189 | 66 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝐺  Σg  ( ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 )  ∘  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ( ( 𝐹  ∘f   −  𝑗 )  ∘f   −  𝑚 ) ) ) )  =  ( 𝐺  Σg  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) | 
						
							| 190 | 188 189 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) )  =  ( 𝐺  Σg  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) | 
						
							| 191 | 190 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) ) )  =  ( 𝑗  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) ) | 
						
							| 192 | 191 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑗  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) ) ) )  =  ( 𝐺  Σg  ( 𝑗  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑚  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  ⦋ ( ( 𝐹  ∘f   −  𝑚 )  ∘f   −  𝑗 )  /  𝑘 ⦌ 𝑋 ) ) ) ) ) | 
						
							| 193 | 101 172 192 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑛  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  𝑛 }  ↦  𝑌 ) ) ) )  =  ( 𝐺  Σg  ( 𝑗  ∈  𝑆  ↦  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) ) ) ) ) |