| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrring.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrring.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | psrass.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 5 |  | psrass.t | ⊢  ×   =  ( .r ‘ 𝑆 ) | 
						
							| 6 |  | psrass.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 7 |  | psrass.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | psrass.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | psrcom.c | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | psrass.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 11 |  | psrass.n | ⊢  ·   =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 12 |  | psrass.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐾 ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 10 11 12 | psrass23l | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  ×  𝑌 )  =  ( 𝐴  ·  ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 15 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 16 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝐴  ∈  𝐾 ) | 
						
							| 17 | 16 10 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝐴  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝐴  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 19 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑌  ∈  𝐵 ) | 
						
							| 20 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ⊆  𝐷 | 
						
							| 21 |  | eqid | ⊢ { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  =  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } | 
						
							| 22 | 4 21 | psrbagconcl | ⊢ ( ( 𝑘  ∈  𝐷  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑥 )  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } ) | 
						
							| 23 | 22 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑥 )  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } ) | 
						
							| 24 | 20 23 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑥 )  ∈  𝐷 ) | 
						
							| 25 | 1 11 14 6 15 4 18 19 24 | psrvscaval | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( ( 𝐴  ·  𝑌 ) ‘ ( 𝑘  ∘f   −  𝑥 ) )  =  ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴  ·  𝑌 ) ‘ ( 𝑘  ∘f   −  𝑥 ) ) )  =  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) | 
						
							| 27 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑋  ∈  𝐵 ) | 
						
							| 28 | 1 14 4 6 27 | psrelbas | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } ) | 
						
							| 30 | 20 29 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑥  ∈  𝐷 ) | 
						
							| 31 | 28 30 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑋 ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 32 | 1 14 4 6 19 | psrelbas | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 33 | 32 24 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 34 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑅  ∈  CRing ) | 
						
							| 35 | 14 15 | crngcom | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 )  =  ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ) | 
						
							| 36 | 35 | 3expb | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 )  =  ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ) | 
						
							| 37 | 34 36 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 )  =  ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ) | 
						
							| 38 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  𝑅  ∈  Ring ) | 
						
							| 39 | 14 15 | ringass | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  ( Base ‘ 𝑅 )  ∧  𝑤  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) ( .r ‘ 𝑅 ) 𝑤 )  =  ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑣 ( .r ‘ 𝑅 ) 𝑤 ) ) ) | 
						
							| 40 | 38 39 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  ( Base ‘ 𝑅 )  ∧  𝑤  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) ( .r ‘ 𝑅 ) 𝑤 )  =  ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑣 ( .r ‘ 𝑅 ) 𝑤 ) ) ) | 
						
							| 41 | 31 18 33 37 40 | caov12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  =  ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) | 
						
							| 42 | 26 41 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴  ·  𝑌 ) ‘ ( 𝑘  ∘f   −  𝑥 ) ) )  =  ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) | 
						
							| 43 | 42 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴  ·  𝑌 ) ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  =  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴  ·  𝑌 ) ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) | 
						
							| 45 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 46 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝑅  ∈  Ring ) | 
						
							| 47 | 4 | psrbaglefi | ⊢ ( 𝑘  ∈  𝐷  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ∈  Fin ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ∈  Fin ) | 
						
							| 49 | 14 15 38 31 33 | ringcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } )  →  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 50 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 51 | 4 50 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 52 | 51 | mptrabex | ⊢ ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  ∈  V | 
						
							| 53 |  | funmpt | ⊢ Fun  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) | 
						
							| 54 |  | fvex | ⊢ ( 0g ‘ 𝑅 )  ∈  V | 
						
							| 55 | 52 53 54 | 3pm3.2i | ⊢ ( ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  ∈  V  ∧  Fun  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  ∧  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 56 | 55 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  ∈  V  ∧  Fun  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  ∧  ( 0g ‘ 𝑅 )  ∈  V ) ) | 
						
							| 57 |  | suppssdm | ⊢ ( ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  dom  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) | 
						
							| 58 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  =  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) | 
						
							| 59 | 58 | dmmptss | ⊢ dom  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  ⊆  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } | 
						
							| 60 | 57 59 | sstri | ⊢ ( ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } | 
						
							| 61 | 60 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } ) | 
						
							| 62 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  ∈  V  ∧  Fun  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  ∧  ( 0g ‘ 𝑅 )  ∈  V )  ∧  ( { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ∈  Fin  ∧  ( ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 } ) )  →  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 63 | 56 48 61 62 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 64 | 14 45 15 46 48 17 49 63 | gsummulc2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) )  =  ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) | 
						
							| 65 | 44 64 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴  ·  𝑌 ) ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) )  =  ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) | 
						
							| 66 | 65 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐷  ↦  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴  ·  𝑌 ) ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) )  =  ( 𝑘  ∈  𝐷  ↦  ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) ) | 
						
							| 67 | 1 11 10 6 3 12 8 | psrvscacl | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 68 | 1 6 15 5 4 7 67 | psrmulfval | ⊢ ( 𝜑  →  ( 𝑋  ×  ( 𝐴  ·  𝑌 ) )  =  ( 𝑘  ∈  𝐷  ↦  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴  ·  𝑌 ) ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) | 
						
							| 69 | 1 6 5 3 7 8 | psrmulcl | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑌 )  ∈  𝐵 ) | 
						
							| 70 | 1 11 10 6 15 4 12 69 | psrvsca | ⊢ ( 𝜑  →  ( 𝐴  ·  ( 𝑋  ×  𝑌 ) )  =  ( ( 𝐷  ×  { 𝐴 } )  ∘f  ( .r ‘ 𝑅 ) ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 71 | 51 | a1i | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 72 |  | ovex | ⊢ ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) )  ∈  V | 
						
							| 73 | 72 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) )  ∈  V ) | 
						
							| 74 |  | fconstmpt | ⊢ ( 𝐷  ×  { 𝐴 } )  =  ( 𝑘  ∈  𝐷  ↦  𝐴 ) | 
						
							| 75 | 74 | a1i | ⊢ ( 𝜑  →  ( 𝐷  ×  { 𝐴 } )  =  ( 𝑘  ∈  𝐷  ↦  𝐴 ) ) | 
						
							| 76 | 1 6 15 5 4 7 8 | psrmulfval | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑌 )  =  ( 𝑘  ∈  𝐷  ↦  ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) | 
						
							| 77 | 71 16 73 75 76 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐷  ×  { 𝐴 } )  ∘f  ( .r ‘ 𝑅 ) ( 𝑋  ×  𝑌 ) )  =  ( 𝑘  ∈  𝐷  ↦  ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) ) | 
						
							| 78 | 70 77 | eqtrd | ⊢ ( 𝜑  →  ( 𝐴  ·  ( 𝑋  ×  𝑌 ) )  =  ( 𝑘  ∈  𝐷  ↦  ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅  Σg  ( 𝑥  ∈  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝑘 }  ↦  ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘  ∘f   −  𝑥 ) ) ) ) ) ) ) ) | 
						
							| 79 | 66 68 78 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑋  ×  ( 𝐴  ·  𝑌 ) )  =  ( 𝐴  ·  ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 80 | 13 79 | jca | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝑋 )  ×  𝑌 )  =  ( 𝐴  ·  ( 𝑋  ×  𝑌 ) )  ∧  ( 𝑋  ×  ( 𝐴  ·  𝑌 ) )  =  ( 𝐴  ·  ( 𝑋  ×  𝑌 ) ) ) ) |