| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrcnrg.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrcnrg.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrcnrg.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 4 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 5 | 1 2 3 | psrsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 7 |  | eqidd | ⊢ ( 𝜑  →  (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 9 | 3 | crngringd | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 10 | 1 2 9 | psrlmod | ⊢ ( 𝜑  →  𝑆  ∈  LMod ) | 
						
							| 11 | 1 2 9 | psrring | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 12 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 13 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 14 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 15 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 17 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 18 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑧  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 19 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑅  ∈  CRing ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 21 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 22 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 23 | 1 12 13 14 15 16 17 18 19 20 21 22 | psrass23 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 )  =  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) )  ∧  ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑧 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) ) | 
						
							| 24 | 23 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 )  =  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) | 
						
							| 25 | 23 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑧 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) | 
						
							| 26 | 4 5 6 7 8 10 11 24 25 | isassad | ⊢ ( 𝜑  →  𝑆  ∈  AssAlg ) |