| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrbag.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | psrbagconf1o.s | ⊢ 𝑆  =  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝐹 } | 
						
							| 3 |  | eqid | ⊢ ( 𝑥  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑥 ) )  =  ( 𝑥  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑥 ) ) | 
						
							| 4 | 1 2 | psrbagconcl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑥  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑥 )  ∈  𝑆 ) | 
						
							| 5 | 1 2 | psrbagconcl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑧  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑧 )  ∈  𝑆 ) | 
						
							| 6 | 1 | psrbagf | ⊢ ( 𝐹  ∈  𝐷  →  𝐹 : 𝐼 ⟶ ℕ0 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝐹 : 𝐼 ⟶ ℕ0 ) | 
						
							| 8 | 7 | ffvelcdmda | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℕ0 ) | 
						
							| 9 | 2 | ssrab3 | ⊢ 𝑆  ⊆  𝐷 | 
						
							| 10 | 9 | sseli | ⊢ ( 𝑧  ∈  𝑆  →  𝑧  ∈  𝐷 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝐷 ) | 
						
							| 12 | 1 | psrbagf | ⊢ ( 𝑧  ∈  𝐷  →  𝑧 : 𝐼 ⟶ ℕ0 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑧  ∈  𝑆 )  →  𝑧 : 𝐼 ⟶ ℕ0 ) | 
						
							| 14 | 13 | adantrl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑧 : 𝐼 ⟶ ℕ0 ) | 
						
							| 15 | 14 | ffvelcdmda | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑧 ‘ 𝑛 )  ∈  ℕ0 ) | 
						
							| 16 |  | simprl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑥  ∈  𝑆 ) | 
						
							| 17 | 9 16 | sselid | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 18 | 1 | psrbagf | ⊢ ( 𝑥  ∈  𝐷  →  𝑥 : 𝐼 ⟶ ℕ0 ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑥 : 𝐼 ⟶ ℕ0 ) | 
						
							| 20 | 19 | ffvelcdmda | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑥 ‘ 𝑛 )  ∈  ℕ0 ) | 
						
							| 21 |  | nn0cn | ⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  ℕ0  →  ( 𝐹 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 22 |  | nn0cn | ⊢ ( ( 𝑧 ‘ 𝑛 )  ∈  ℕ0  →  ( 𝑧 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 23 |  | nn0cn | ⊢ ( ( 𝑥 ‘ 𝑛 )  ∈  ℕ0  →  ( 𝑥 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 24 |  | subsub23 | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∈  ℂ  ∧  ( 𝑧 ‘ 𝑛 )  ∈  ℂ  ∧  ( 𝑥 ‘ 𝑛 )  ∈  ℂ )  →  ( ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑧 ‘ 𝑛 ) )  =  ( 𝑥 ‘ 𝑛 )  ↔  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑥 ‘ 𝑛 ) )  =  ( 𝑧 ‘ 𝑛 ) ) ) | 
						
							| 25 | 21 22 23 24 | syl3an | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∈  ℕ0  ∧  ( 𝑧 ‘ 𝑛 )  ∈  ℕ0  ∧  ( 𝑥 ‘ 𝑛 )  ∈  ℕ0 )  →  ( ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑧 ‘ 𝑛 ) )  =  ( 𝑥 ‘ 𝑛 )  ↔  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑥 ‘ 𝑛 ) )  =  ( 𝑧 ‘ 𝑛 ) ) ) | 
						
							| 26 | 8 15 20 25 | syl3anc | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑧 ‘ 𝑛 ) )  =  ( 𝑥 ‘ 𝑛 )  ↔  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑥 ‘ 𝑛 ) )  =  ( 𝑧 ‘ 𝑛 ) ) ) | 
						
							| 27 |  | eqcom | ⊢ ( ( 𝑥 ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑧 ‘ 𝑛 ) )  ↔  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑧 ‘ 𝑛 ) )  =  ( 𝑥 ‘ 𝑛 ) ) | 
						
							| 28 |  | eqcom | ⊢ ( ( 𝑧 ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑥 ‘ 𝑛 ) )  ↔  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑥 ‘ 𝑛 ) )  =  ( 𝑧 ‘ 𝑛 ) ) | 
						
							| 29 | 26 27 28 | 3bitr4g | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑧 ‘ 𝑛 ) )  ↔  ( 𝑧 ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑥 ‘ 𝑛 ) ) ) ) | 
						
							| 30 | 6 | ffnd | ⊢ ( 𝐹  ∈  𝐷  →  𝐹  Fn  𝐼 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝐹  Fn  𝐼 ) | 
						
							| 32 | 13 | ffnd | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑧  ∈  𝑆 )  →  𝑧  Fn  𝐼 ) | 
						
							| 33 | 32 | adantrl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑧  Fn  𝐼 ) | 
						
							| 34 | 19 | ffnd | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑥  Fn  𝐼 ) | 
						
							| 35 | 16 34 | fndmexd | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝐼  ∈  V ) | 
						
							| 36 |  | inidm | ⊢ ( 𝐼  ∩  𝐼 )  =  𝐼 | 
						
							| 37 |  | eqidd | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 38 |  | eqidd | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑧 ‘ 𝑛 )  =  ( 𝑧 ‘ 𝑛 ) ) | 
						
							| 39 | 31 33 35 35 36 37 38 | ofval | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝐹  ∘f   −  𝑧 ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑧 ‘ 𝑛 ) ) ) | 
						
							| 40 | 39 | eqeq2d | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑛 )  =  ( ( 𝐹  ∘f   −  𝑧 ) ‘ 𝑛 )  ↔  ( 𝑥 ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑧 ‘ 𝑛 ) ) ) ) | 
						
							| 41 |  | eqidd | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑥 ‘ 𝑛 )  =  ( 𝑥 ‘ 𝑛 ) ) | 
						
							| 42 | 31 34 35 35 36 37 41 | ofval | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝐹  ∘f   −  𝑥 ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑥 ‘ 𝑛 ) ) ) | 
						
							| 43 | 42 | eqeq2d | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝑧 ‘ 𝑛 )  =  ( ( 𝐹  ∘f   −  𝑥 ) ‘ 𝑛 )  ↔  ( 𝑧 ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝑥 ‘ 𝑛 ) ) ) ) | 
						
							| 44 | 29 40 43 | 3bitr4d | ⊢ ( ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑛 )  =  ( ( 𝐹  ∘f   −  𝑧 ) ‘ 𝑛 )  ↔  ( 𝑧 ‘ 𝑛 )  =  ( ( 𝐹  ∘f   −  𝑥 ) ‘ 𝑛 ) ) ) | 
						
							| 45 | 44 | ralbidva | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ∀ 𝑛  ∈  𝐼 ( 𝑥 ‘ 𝑛 )  =  ( ( 𝐹  ∘f   −  𝑧 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( 𝑧 ‘ 𝑛 )  =  ( ( 𝐹  ∘f   −  𝑥 ) ‘ 𝑛 ) ) ) | 
						
							| 46 | 5 | adantrl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝐹  ∘f   −  𝑧 )  ∈  𝑆 ) | 
						
							| 47 | 9 46 | sselid | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝐹  ∘f   −  𝑧 )  ∈  𝐷 ) | 
						
							| 48 | 1 | psrbagf | ⊢ ( ( 𝐹  ∘f   −  𝑧 )  ∈  𝐷  →  ( 𝐹  ∘f   −  𝑧 ) : 𝐼 ⟶ ℕ0 ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝐹  ∘f   −  𝑧 ) : 𝐼 ⟶ ℕ0 ) | 
						
							| 50 | 49 | ffnd | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝐹  ∘f   −  𝑧 )  Fn  𝐼 ) | 
						
							| 51 |  | eqfnfv | ⊢ ( ( 𝑥  Fn  𝐼  ∧  ( 𝐹  ∘f   −  𝑧 )  Fn  𝐼 )  →  ( 𝑥  =  ( 𝐹  ∘f   −  𝑧 )  ↔  ∀ 𝑛  ∈  𝐼 ( 𝑥 ‘ 𝑛 )  =  ( ( 𝐹  ∘f   −  𝑧 ) ‘ 𝑛 ) ) ) | 
						
							| 52 | 34 50 51 | syl2anc | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑥  =  ( 𝐹  ∘f   −  𝑧 )  ↔  ∀ 𝑛  ∈  𝐼 ( 𝑥 ‘ 𝑛 )  =  ( ( 𝐹  ∘f   −  𝑧 ) ‘ 𝑛 ) ) ) | 
						
							| 53 | 9 4 | sselid | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑥  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑥 )  ∈  𝐷 ) | 
						
							| 54 | 1 | psrbagf | ⊢ ( ( 𝐹  ∘f   −  𝑥 )  ∈  𝐷  →  ( 𝐹  ∘f   −  𝑥 ) : 𝐼 ⟶ ℕ0 ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑥  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑥 ) : 𝐼 ⟶ ℕ0 ) | 
						
							| 56 | 55 | ffnd | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑥  ∈  𝑆 )  →  ( 𝐹  ∘f   −  𝑥 )  Fn  𝐼 ) | 
						
							| 57 | 56 | adantrr | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝐹  ∘f   −  𝑥 )  Fn  𝐼 ) | 
						
							| 58 |  | eqfnfv | ⊢ ( ( 𝑧  Fn  𝐼  ∧  ( 𝐹  ∘f   −  𝑥 )  Fn  𝐼 )  →  ( 𝑧  =  ( 𝐹  ∘f   −  𝑥 )  ↔  ∀ 𝑛  ∈  𝐼 ( 𝑧 ‘ 𝑛 )  =  ( ( 𝐹  ∘f   −  𝑥 ) ‘ 𝑛 ) ) ) | 
						
							| 59 | 33 57 58 | syl2anc | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑧  =  ( 𝐹  ∘f   −  𝑥 )  ↔  ∀ 𝑛  ∈  𝐼 ( 𝑧 ‘ 𝑛 )  =  ( ( 𝐹  ∘f   −  𝑥 ) ‘ 𝑛 ) ) ) | 
						
							| 60 | 45 52 59 | 3bitr4d | ⊢ ( ( 𝐹  ∈  𝐷  ∧  ( 𝑥  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑥  =  ( 𝐹  ∘f   −  𝑧 )  ↔  𝑧  =  ( 𝐹  ∘f   −  𝑥 ) ) ) | 
						
							| 61 | 3 4 5 60 | f1o2d | ⊢ ( 𝐹  ∈  𝐷  →  ( 𝑥  ∈  𝑆  ↦  ( 𝐹  ∘f   −  𝑥 ) ) : 𝑆 –1-1-onto→ 𝑆 ) |