Step |
Hyp |
Ref |
Expression |
1 |
|
psrbagev1.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
2 |
|
psrbagev1.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
3 |
|
psrbagev1.x |
⊢ · = ( .g ‘ 𝑇 ) |
4 |
|
psrbagev1.z |
⊢ 0 = ( 0g ‘ 𝑇 ) |
5 |
|
psrbagev1.t |
⊢ ( 𝜑 → 𝑇 ∈ CMnd ) |
6 |
|
psrbagev1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
7 |
|
psrbagev1.g |
⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) |
8 |
5
|
cmnmndd |
⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
9 |
2 3
|
mulgnn0cl |
⊢ ( ( 𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 ) |
10 |
9
|
3expb |
⊢ ( ( 𝑇 ∈ Mnd ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 ) |
11 |
8 10
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 ) |
12 |
1
|
psrbagf |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 : 𝐼 ⟶ ℕ0 ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝐵 : 𝐼 ⟶ ℕ0 ) |
14 |
13
|
ffnd |
⊢ ( 𝜑 → 𝐵 Fn 𝐼 ) |
15 |
6 14
|
fndmexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
16 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
17 |
11 13 7 15 15 16
|
off |
⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ) |
18 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) ∈ V ) |
19 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐼 ) |
20 |
14 19 15 15
|
offun |
⊢ ( 𝜑 → Fun ( 𝐵 ∘f · 𝐺 ) ) |
21 |
4
|
fvexi |
⊢ 0 ∈ V |
22 |
21
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
23 |
1
|
psrbagfsupp |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 finSupp 0 ) |
24 |
6 23
|
syl |
⊢ ( 𝜑 → 𝐵 finSupp 0 ) |
25 |
24
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐵 supp 0 ) ∈ Fin ) |
26 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐵 supp 0 ) ⊆ ( 𝐵 supp 0 ) ) |
27 |
2 4 3
|
mulg0 |
⊢ ( 𝑧 ∈ 𝐶 → ( 0 · 𝑧 ) = 0 ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 0 · 𝑧 ) = 0 ) |
29 |
|
c0ex |
⊢ 0 ∈ V |
30 |
29
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
31 |
26 28 13 7 15 30
|
suppssof1 |
⊢ ( 𝜑 → ( ( 𝐵 ∘f · 𝐺 ) supp 0 ) ⊆ ( 𝐵 supp 0 ) ) |
32 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝐵 ∘f · 𝐺 ) ∈ V ∧ Fun ( 𝐵 ∘f · 𝐺 ) ∧ 0 ∈ V ) ∧ ( ( 𝐵 supp 0 ) ∈ Fin ∧ ( ( 𝐵 ∘f · 𝐺 ) supp 0 ) ⊆ ( 𝐵 supp 0 ) ) ) → ( 𝐵 ∘f · 𝐺 ) finSupp 0 ) |
33 |
18 20 22 25 31 32
|
syl32anc |
⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) finSupp 0 ) |
34 |
17 33
|
jca |
⊢ ( 𝜑 → ( ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ∧ ( 𝐵 ∘f · 𝐺 ) finSupp 0 ) ) |