Metamath Proof Explorer


Theorem psrbagev1

Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses psrbagev1.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
psrbagev1.c 𝐶 = ( Base ‘ 𝑇 )
psrbagev1.x · = ( .g𝑇 )
psrbagev1.z 0 = ( 0g𝑇 )
psrbagev1.t ( 𝜑𝑇 ∈ CMnd )
psrbagev1.b ( 𝜑𝐵𝐷 )
psrbagev1.g ( 𝜑𝐺 : 𝐼𝐶 )
Assertion psrbagev1 ( 𝜑 → ( ( 𝐵f · 𝐺 ) : 𝐼𝐶 ∧ ( 𝐵f · 𝐺 ) finSupp 0 ) )

Proof

Step Hyp Ref Expression
1 psrbagev1.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
2 psrbagev1.c 𝐶 = ( Base ‘ 𝑇 )
3 psrbagev1.x · = ( .g𝑇 )
4 psrbagev1.z 0 = ( 0g𝑇 )
5 psrbagev1.t ( 𝜑𝑇 ∈ CMnd )
6 psrbagev1.b ( 𝜑𝐵𝐷 )
7 psrbagev1.g ( 𝜑𝐺 : 𝐼𝐶 )
8 5 cmnmndd ( 𝜑𝑇 ∈ Mnd )
9 2 3 mulgnn0cl ( ( 𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑧𝐶 ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 )
10 9 3expb ( ( 𝑇 ∈ Mnd ∧ ( 𝑦 ∈ ℕ0𝑧𝐶 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 )
11 8 10 sylan ( ( 𝜑 ∧ ( 𝑦 ∈ ℕ0𝑧𝐶 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 )
12 1 psrbagf ( 𝐵𝐷𝐵 : 𝐼 ⟶ ℕ0 )
13 6 12 syl ( 𝜑𝐵 : 𝐼 ⟶ ℕ0 )
14 13 ffnd ( 𝜑𝐵 Fn 𝐼 )
15 6 14 fndmexd ( 𝜑𝐼 ∈ V )
16 inidm ( 𝐼𝐼 ) = 𝐼
17 11 13 7 15 15 16 off ( 𝜑 → ( 𝐵f · 𝐺 ) : 𝐼𝐶 )
18 ovexd ( 𝜑 → ( 𝐵f · 𝐺 ) ∈ V )
19 7 ffnd ( 𝜑𝐺 Fn 𝐼 )
20 14 19 15 15 offun ( 𝜑 → Fun ( 𝐵f · 𝐺 ) )
21 4 fvexi 0 ∈ V
22 21 a1i ( 𝜑0 ∈ V )
23 1 psrbagfsupp ( 𝐵𝐷𝐵 finSupp 0 )
24 6 23 syl ( 𝜑𝐵 finSupp 0 )
25 24 fsuppimpd ( 𝜑 → ( 𝐵 supp 0 ) ∈ Fin )
26 ssidd ( 𝜑 → ( 𝐵 supp 0 ) ⊆ ( 𝐵 supp 0 ) )
27 2 4 3 mulg0 ( 𝑧𝐶 → ( 0 · 𝑧 ) = 0 )
28 27 adantl ( ( 𝜑𝑧𝐶 ) → ( 0 · 𝑧 ) = 0 )
29 c0ex 0 ∈ V
30 29 a1i ( 𝜑 → 0 ∈ V )
31 26 28 13 7 15 30 suppssof1 ( 𝜑 → ( ( 𝐵f · 𝐺 ) supp 0 ) ⊆ ( 𝐵 supp 0 ) )
32 suppssfifsupp ( ( ( ( 𝐵f · 𝐺 ) ∈ V ∧ Fun ( 𝐵f · 𝐺 ) ∧ 0 ∈ V ) ∧ ( ( 𝐵 supp 0 ) ∈ Fin ∧ ( ( 𝐵f · 𝐺 ) supp 0 ) ⊆ ( 𝐵 supp 0 ) ) ) → ( 𝐵f · 𝐺 ) finSupp 0 )
33 18 20 22 25 31 32 syl32anc ( 𝜑 → ( 𝐵f · 𝐺 ) finSupp 0 )
34 17 33 jca ( 𝜑 → ( ( 𝐵f · 𝐺 ) : 𝐼𝐶 ∧ ( 𝐵f · 𝐺 ) finSupp 0 ) )