| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrbagev1.d | ⊢ 𝐷  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | psrbagev1.c | ⊢ 𝐶  =  ( Base ‘ 𝑇 ) | 
						
							| 3 |  | psrbagev1.x | ⊢  ·   =  ( .g ‘ 𝑇 ) | 
						
							| 4 |  | psrbagev1.z | ⊢  0   =  ( 0g ‘ 𝑇 ) | 
						
							| 5 |  | psrbagev1.t | ⊢ ( 𝜑  →  𝑇  ∈  CMnd ) | 
						
							| 6 |  | psrbagev1.b | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 7 |  | psrbagev1.g | ⊢ ( 𝜑  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 8 | 5 | cmnmndd | ⊢ ( 𝜑  →  𝑇  ∈  Mnd ) | 
						
							| 9 | 2 3 | mulgnn0cl | ⊢ ( ( 𝑇  ∈  Mnd  ∧  𝑦  ∈  ℕ0  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  ·  𝑧 )  ∈  𝐶 ) | 
						
							| 10 | 9 | 3expb | ⊢ ( ( 𝑇  ∈  Mnd  ∧  ( 𝑦  ∈  ℕ0  ∧  𝑧  ∈  𝐶 ) )  →  ( 𝑦  ·  𝑧 )  ∈  𝐶 ) | 
						
							| 11 | 8 10 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℕ0  ∧  𝑧  ∈  𝐶 ) )  →  ( 𝑦  ·  𝑧 )  ∈  𝐶 ) | 
						
							| 12 | 1 | psrbagf | ⊢ ( 𝐵  ∈  𝐷  →  𝐵 : 𝐼 ⟶ ℕ0 ) | 
						
							| 13 | 6 12 | syl | ⊢ ( 𝜑  →  𝐵 : 𝐼 ⟶ ℕ0 ) | 
						
							| 14 | 13 | ffnd | ⊢ ( 𝜑  →  𝐵  Fn  𝐼 ) | 
						
							| 15 | 6 14 | fndmexd | ⊢ ( 𝜑  →  𝐼  ∈  V ) | 
						
							| 16 |  | inidm | ⊢ ( 𝐼  ∩  𝐼 )  =  𝐼 | 
						
							| 17 | 11 13 7 15 15 16 | off | ⊢ ( 𝜑  →  ( 𝐵  ∘f   ·  𝐺 ) : 𝐼 ⟶ 𝐶 ) | 
						
							| 18 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐵  ∘f   ·  𝐺 )  ∈  V ) | 
						
							| 19 | 7 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐼 ) | 
						
							| 20 | 14 19 15 15 | offun | ⊢ ( 𝜑  →  Fun  ( 𝐵  ∘f   ·  𝐺 ) ) | 
						
							| 21 | 4 | fvexi | ⊢  0   ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 23 | 1 | psrbagfsupp | ⊢ ( 𝐵  ∈  𝐷  →  𝐵  finSupp  0 ) | 
						
							| 24 | 6 23 | syl | ⊢ ( 𝜑  →  𝐵  finSupp  0 ) | 
						
							| 25 | 24 | fsuppimpd | ⊢ ( 𝜑  →  ( 𝐵  supp  0 )  ∈  Fin ) | 
						
							| 26 |  | ssidd | ⊢ ( 𝜑  →  ( 𝐵  supp  0 )  ⊆  ( 𝐵  supp  0 ) ) | 
						
							| 27 | 2 4 3 | mulg0 | ⊢ ( 𝑧  ∈  𝐶  →  ( 0  ·  𝑧 )  =   0  ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐶 )  →  ( 0  ·  𝑧 )  =   0  ) | 
						
							| 29 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 30 | 29 | a1i | ⊢ ( 𝜑  →  0  ∈  V ) | 
						
							| 31 | 26 28 13 7 15 30 | suppssof1 | ⊢ ( 𝜑  →  ( ( 𝐵  ∘f   ·  𝐺 )  supp   0  )  ⊆  ( 𝐵  supp  0 ) ) | 
						
							| 32 |  | suppssfifsupp | ⊢ ( ( ( ( 𝐵  ∘f   ·  𝐺 )  ∈  V  ∧  Fun  ( 𝐵  ∘f   ·  𝐺 )  ∧   0   ∈  V )  ∧  ( ( 𝐵  supp  0 )  ∈  Fin  ∧  ( ( 𝐵  ∘f   ·  𝐺 )  supp   0  )  ⊆  ( 𝐵  supp  0 ) ) )  →  ( 𝐵  ∘f   ·  𝐺 )  finSupp   0  ) | 
						
							| 33 | 18 20 22 25 31 32 | syl32anc | ⊢ ( 𝜑  →  ( 𝐵  ∘f   ·  𝐺 )  finSupp   0  ) | 
						
							| 34 | 17 33 | jca | ⊢ ( 𝜑  →  ( ( 𝐵  ∘f   ·  𝐺 ) : 𝐼 ⟶ 𝐶  ∧  ( 𝐵  ∘f   ·  𝐺 )  finSupp   0  ) ) |