Step |
Hyp |
Ref |
Expression |
1 |
|
psrbagev2.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
2 |
|
psrbagev2.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
3 |
|
psrbagev2.x |
⊢ · = ( .g ‘ 𝑇 ) |
4 |
|
psrbagev2.t |
⊢ ( 𝜑 → 𝑇 ∈ CMnd ) |
5 |
|
psrbagev2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
6 |
|
psrbagev2.g |
⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
8 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) ∈ V ) |
9 |
1 2 3 7 4 5 6
|
psrbagev1 |
⊢ ( 𝜑 → ( ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ∧ ( 𝐵 ∘f · 𝐺 ) finSupp ( 0g ‘ 𝑇 ) ) ) |
10 |
9
|
simpld |
⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ) |
11 |
10
|
ffnd |
⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) Fn 𝐼 ) |
12 |
8 11
|
fndmexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
13 |
9
|
simprd |
⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) finSupp ( 0g ‘ 𝑇 ) ) |
14 |
2 7 4 12 10 13
|
gsumcl |
⊢ ( 𝜑 → ( 𝑇 Σg ( 𝐵 ∘f · 𝐺 ) ) ∈ 𝐶 ) |