Metamath Proof Explorer


Theorem psrbagev2

Description: Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015) (Proof shortened by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses psrbagev2.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
psrbagev2.c 𝐶 = ( Base ‘ 𝑇 )
psrbagev2.x · = ( .g𝑇 )
psrbagev2.t ( 𝜑𝑇 ∈ CMnd )
psrbagev2.b ( 𝜑𝐵𝐷 )
psrbagev2.g ( 𝜑𝐺 : 𝐼𝐶 )
Assertion psrbagev2 ( 𝜑 → ( 𝑇 Σg ( 𝐵f · 𝐺 ) ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 psrbagev2.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
2 psrbagev2.c 𝐶 = ( Base ‘ 𝑇 )
3 psrbagev2.x · = ( .g𝑇 )
4 psrbagev2.t ( 𝜑𝑇 ∈ CMnd )
5 psrbagev2.b ( 𝜑𝐵𝐷 )
6 psrbagev2.g ( 𝜑𝐺 : 𝐼𝐶 )
7 eqid ( 0g𝑇 ) = ( 0g𝑇 )
8 ovexd ( 𝜑 → ( 𝐵f · 𝐺 ) ∈ V )
9 1 2 3 7 4 5 6 psrbagev1 ( 𝜑 → ( ( 𝐵f · 𝐺 ) : 𝐼𝐶 ∧ ( 𝐵f · 𝐺 ) finSupp ( 0g𝑇 ) ) )
10 9 simpld ( 𝜑 → ( 𝐵f · 𝐺 ) : 𝐼𝐶 )
11 10 ffnd ( 𝜑 → ( 𝐵f · 𝐺 ) Fn 𝐼 )
12 8 11 fndmexd ( 𝜑𝐼 ∈ V )
13 9 simprd ( 𝜑 → ( 𝐵f · 𝐺 ) finSupp ( 0g𝑇 ) )
14 2 7 4 12 10 13 gsumcl ( 𝜑 → ( 𝑇 Σg ( 𝐵f · 𝐺 ) ) ∈ 𝐶 )