Metamath Proof Explorer


Theorem psrbagev2OLD

Description: Obsolete version of psrbagev2 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015) (Proof shortened by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses psrbagev2.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
psrbagev2.c 𝐶 = ( Base ‘ 𝑇 )
psrbagev2.x · = ( .g𝑇 )
psrbagev2.t ( 𝜑𝑇 ∈ CMnd )
psrbagev2.b ( 𝜑𝐵𝐷 )
psrbagev2.g ( 𝜑𝐺 : 𝐼𝐶 )
psrbagev2OLD.i ( 𝜑𝐼𝑊 )
Assertion psrbagev2OLD ( 𝜑 → ( 𝑇 Σg ( 𝐵f · 𝐺 ) ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 psrbagev2.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
2 psrbagev2.c 𝐶 = ( Base ‘ 𝑇 )
3 psrbagev2.x · = ( .g𝑇 )
4 psrbagev2.t ( 𝜑𝑇 ∈ CMnd )
5 psrbagev2.b ( 𝜑𝐵𝐷 )
6 psrbagev2.g ( 𝜑𝐺 : 𝐼𝐶 )
7 psrbagev2OLD.i ( 𝜑𝐼𝑊 )
8 eqid ( 0g𝑇 ) = ( 0g𝑇 )
9 1 2 3 8 4 5 6 7 psrbagev1OLD ( 𝜑 → ( ( 𝐵f · 𝐺 ) : 𝐼𝐶 ∧ ( 𝐵f · 𝐺 ) finSupp ( 0g𝑇 ) ) )
10 9 simpld ( 𝜑 → ( 𝐵f · 𝐺 ) : 𝐼𝐶 )
11 9 simprd ( 𝜑 → ( 𝐵f · 𝐺 ) finSupp ( 0g𝑇 ) )
12 2 8 4 7 10 11 gsumcl ( 𝜑 → ( 𝑇 Σg ( 𝐵f · 𝐺 ) ) ∈ 𝐶 )