Description: Obsolete version of psrbagev2 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015) (Proof shortened by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psrbagev2.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
psrbagev2.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
psrbagev2.x | ⊢ · = ( .g ‘ 𝑇 ) | ||
psrbagev2.t | ⊢ ( 𝜑 → 𝑇 ∈ CMnd ) | ||
psrbagev2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
psrbagev2.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | ||
psrbagev2OLD.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
Assertion | psrbagev2OLD | ⊢ ( 𝜑 → ( 𝑇 Σg ( 𝐵 ∘f · 𝐺 ) ) ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbagev2.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
2 | psrbagev2.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
3 | psrbagev2.x | ⊢ · = ( .g ‘ 𝑇 ) | |
4 | psrbagev2.t | ⊢ ( 𝜑 → 𝑇 ∈ CMnd ) | |
5 | psrbagev2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
6 | psrbagev2.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | |
7 | psrbagev2OLD.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
8 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
9 | 1 2 3 8 4 5 6 7 | psrbagev1OLD | ⊢ ( 𝜑 → ( ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ∧ ( 𝐵 ∘f · 𝐺 ) finSupp ( 0g ‘ 𝑇 ) ) ) |
10 | 9 | simpld | ⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ) |
11 | 9 | simprd | ⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) finSupp ( 0g ‘ 𝑇 ) ) |
12 | 2 8 4 7 10 11 | gsumcl | ⊢ ( 𝜑 → ( 𝑇 Σg ( 𝐵 ∘f · 𝐺 ) ) ∈ 𝐶 ) |