Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| Assertion | psrbagf | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | 1 | eleq2i | ⊢ ( 𝐹 ∈ 𝐷 ↔ 𝐹 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 3 | elrabi | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝐹 ∈ ( ℕ0 ↑m 𝐼 ) ) | |
| 4 | elmapi | ⊢ ( 𝐹 ∈ ( ℕ0 ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℕ0 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 6 | 2 5 | sylbi | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |