| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrbag.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝐺 : 𝐼 ⟶ ℕ0  ∧  𝐺  ∘r   ≤  𝐹 )  →  𝐺 : 𝐼 ⟶ ℕ0 ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝐺 : 𝐼 ⟶ ℕ0  ∧  𝐺  ∘r   ≤  𝐹 )  →  𝐹  ∈  𝐷 ) | 
						
							| 4 |  | id | ⊢ ( 𝐹  ∈  𝐷  →  𝐹  ∈  𝐷 ) | 
						
							| 5 | 1 | psrbagf | ⊢ ( 𝐹  ∈  𝐷  →  𝐹 : 𝐼 ⟶ ℕ0 ) | 
						
							| 6 | 5 | ffnd | ⊢ ( 𝐹  ∈  𝐷  →  𝐹  Fn  𝐼 ) | 
						
							| 7 | 4 6 | fndmexd | ⊢ ( 𝐹  ∈  𝐷  →  𝐼  ∈  V ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝐺 : 𝐼 ⟶ ℕ0  ∧  𝐺  ∘r   ≤  𝐹 )  →  𝐼  ∈  V ) | 
						
							| 9 | 1 | psrbag | ⊢ ( 𝐼  ∈  V  →  ( 𝐹  ∈  𝐷  ↔  ( 𝐹 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝐹  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝐺 : 𝐼 ⟶ ℕ0  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( 𝐹  ∈  𝐷  ↔  ( 𝐹 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝐹  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 11 | 3 10 | mpbid | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝐺 : 𝐼 ⟶ ℕ0  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( 𝐹 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝐹  “  ℕ )  ∈  Fin ) ) | 
						
							| 12 | 11 | simprd | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝐺 : 𝐼 ⟶ ℕ0  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( ◡ 𝐹  “  ℕ )  ∈  Fin ) | 
						
							| 13 | 1 | psrbaglesupp | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝐺 : 𝐼 ⟶ ℕ0  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( ◡ 𝐺  “  ℕ )  ⊆  ( ◡ 𝐹  “  ℕ ) ) | 
						
							| 14 | 12 13 | ssfid | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝐺 : 𝐼 ⟶ ℕ0  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( ◡ 𝐺  “  ℕ )  ∈  Fin ) | 
						
							| 15 | 1 | psrbag | ⊢ ( 𝐼  ∈  V  →  ( 𝐺  ∈  𝐷  ↔  ( 𝐺 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝐺  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 16 | 8 15 | syl | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝐺 : 𝐼 ⟶ ℕ0  ∧  𝐺  ∘r   ≤  𝐹 )  →  ( 𝐺  ∈  𝐷  ↔  ( 𝐺 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝐺  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 17 | 2 14 16 | mpbir2and | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝐺 : 𝐼 ⟶ ℕ0  ∧  𝐺  ∘r   ≤  𝐹 )  →  𝐺  ∈  𝐷 ) |