Step |
Hyp |
Ref |
Expression |
1 |
|
psrbag.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
2 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) } |
3 |
1
|
psrbagf |
⊢ ( 𝑦 ∈ 𝐷 → 𝑦 : 𝐼 ⟶ ℕ0 ) |
4 |
3
|
a1i |
⊢ ( 𝐹 ∈ 𝐷 → ( 𝑦 ∈ 𝐷 → 𝑦 : 𝐼 ⟶ ℕ0 ) ) |
5 |
4
|
adantrd |
⊢ ( 𝐹 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) → 𝑦 : 𝐼 ⟶ ℕ0 ) ) |
6 |
|
ss2ixp |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ ℕ0 → X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ X 𝑥 ∈ 𝐼 ℕ0 ) |
7 |
|
fz0ssnn0 |
⊢ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ ℕ0 |
8 |
7
|
a1i |
⊢ ( 𝑥 ∈ 𝐼 → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ ℕ0 ) |
9 |
6 8
|
mprg |
⊢ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ X 𝑥 ∈ 𝐼 ℕ0 |
10 |
9
|
sseli |
⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ X 𝑥 ∈ 𝐼 ℕ0 ) |
11 |
|
vex |
⊢ 𝑦 ∈ V |
12 |
11
|
elixpconst |
⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ℕ0 ↔ 𝑦 : 𝐼 ⟶ ℕ0 ) |
13 |
10 12
|
sylib |
⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) → 𝑦 : 𝐼 ⟶ ℕ0 ) |
14 |
13
|
a1i |
⊢ ( 𝐹 ∈ 𝐷 → ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) → 𝑦 : 𝐼 ⟶ ℕ0 ) ) |
15 |
|
ffn |
⊢ ( 𝑦 : 𝐼 ⟶ ℕ0 → 𝑦 Fn 𝐼 ) |
16 |
15
|
adantl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → 𝑦 Fn 𝐼 ) |
17 |
11
|
elixp |
⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) |
18 |
17
|
baib |
⊢ ( 𝑦 Fn 𝐼 → ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) |
19 |
16 18
|
syl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) |
20 |
|
ffvelrn |
⊢ ( ( 𝑦 : 𝐼 ⟶ ℕ0 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) ∈ ℕ0 ) |
21 |
20
|
adantll |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) ∈ ℕ0 ) |
22 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
23 |
21 22
|
eleqtrdi |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 0 ) ) |
24 |
1
|
psrbagf |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
25 |
24
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
26 |
25
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℕ0 ) |
27 |
26
|
nn0zd |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
28 |
|
elfz5 |
⊢ ( ( ( 𝑦 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) → ( ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑦 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
29 |
23 27 28
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑦 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
30 |
29
|
ralbidva |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
31 |
24
|
ffnd |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼 ) |
32 |
31
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → 𝐹 Fn 𝐼 ) |
33 |
11
|
a1i |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → 𝑦 ∈ V ) |
34 |
|
simpl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → 𝐹 ∈ 𝐷 ) |
35 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
36 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) = ( 𝑦 ‘ 𝑥 ) ) |
37 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
38 |
16 32 33 34 35 36 37
|
ofrfvalg |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( 𝑦 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
39 |
30 38
|
bitr4d |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ 𝑦 ∘r ≤ 𝐹 ) ) |
40 |
1
|
psrbaglecl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ∧ 𝑦 ∘r ≤ 𝐹 ) → 𝑦 ∈ 𝐷 ) |
41 |
40
|
3expia |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( 𝑦 ∘r ≤ 𝐹 → 𝑦 ∈ 𝐷 ) ) |
42 |
41
|
pm4.71rd |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( 𝑦 ∘r ≤ 𝐹 ↔ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) ) ) |
43 |
19 39 42
|
3bitrrd |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) ↔ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) |
44 |
43
|
ex |
⊢ ( 𝐹 ∈ 𝐷 → ( 𝑦 : 𝐼 ⟶ ℕ0 → ( ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) ↔ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
45 |
5 14 44
|
pm5.21ndd |
⊢ ( 𝐹 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) ↔ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) |
46 |
45
|
abbi1dv |
⊢ ( 𝐹 ∈ 𝐷 → { 𝑦 ∣ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) } = X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) |
47 |
2 46
|
eqtrid |
⊢ ( 𝐹 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } = X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) |
48 |
|
cnveq |
⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) |
49 |
48
|
imaeq1d |
⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝐹 “ ℕ ) ) |
50 |
49
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
51 |
50 1
|
elrab2 |
⊢ ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 ∈ ( ℕ0 ↑m 𝐼 ) ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
52 |
51
|
simprbi |
⊢ ( 𝐹 ∈ 𝐷 → ( ◡ 𝐹 “ ℕ ) ∈ Fin ) |
53 |
|
fzfid |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑥 ∈ 𝐼 ) → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ∈ Fin ) |
54 |
|
frnnn0suppg |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ℕ ) ) |
55 |
24 54
|
mpdan |
⊢ ( 𝐹 ∈ 𝐷 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ℕ ) ) |
56 |
|
eqimss |
⊢ ( ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ℕ ) → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
57 |
55 56
|
syl |
⊢ ( 𝐹 ∈ 𝐷 → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
58 |
|
id |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷 ) |
59 |
|
c0ex |
⊢ 0 ∈ V |
60 |
59
|
a1i |
⊢ ( 𝐹 ∈ 𝐷 → 0 ∈ V ) |
61 |
24 57 58 60
|
suppssrg |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
62 |
61
|
oveq2d |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) = ( 0 ... 0 ) ) |
63 |
|
fz0sn |
⊢ ( 0 ... 0 ) = { 0 } |
64 |
62 63
|
eqtrdi |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) = { 0 } ) |
65 |
|
eqimss |
⊢ ( ( 0 ... ( 𝐹 ‘ 𝑥 ) ) = { 0 } → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ { 0 } ) |
66 |
64 65
|
syl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ { 0 } ) |
67 |
52 53 66
|
ixpfi2 |
⊢ ( 𝐹 ∈ 𝐷 → X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ∈ Fin ) |
68 |
47 67
|
eqeltrd |
⊢ ( 𝐹 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ Fin ) |